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Significance

RNA viruses hijack cellular 
metabolism and promote their 
own replication using compact 
genomes that encode 
information in both their primary 
sequences and in higher-order 
structures. Most functional 
structures identified to date have 
been found by identifying specific 
sequences conserved across a 
group of related viruses. By 
inverting the conventional 
approach, first defining RNA 
structures and then looking for 
conservation of these motifs, we 
efficiently discover multiple 
previously unannotated motifs 
important for viral fitness. This 
work reveals that RNA structure 
is a powerful tool to find 
functional elements in viruses, 
identifies potential motifs useful 
in antiviral and vaccine 
development, and sets the stage 
for further discovery of 
functional elements in large viral, 
messenger, and noncoding RNAs.
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The genomes of RNA viruses encode the information required for replication in host 
cells both in their linear sequence and in complex higher-order structures. A subset of 
these RNA genome structures show clear sequence conservation, and have been exten-
sively described for well-characterized viruses. However, the extent to which viral RNA 
genomes contain functional structural elements—unable to be detected by sequence 
alone—that nonetheless are critical to viral fitness is largely unknown. Here, we devise 
a structure-first experimental strategy and use it to identify 22 structure-similar motifs 
across the coding sequences of the RNA genomes for the four dengue virus serotypes. At 
least 10 of these motifs modulate viral fitness, revealing a significant unnoticed extent 
of RNA structure-mediated regulation within viral coding sequences. These viral RNA 
structures promote a compact global genome architecture, interact with proteins, and 
regulate the viral replication cycle. These motifs are also thus constrained at the levels of 
both RNA structure and protein sequence and are potential resistance-refractory targets 
for antivirals and live-attenuated vaccines. Structure-first identification of conserved 
RNA structure enables efficient discovery of pervasive RNA-mediated regulation in 
viral genomes and, likely, other cellular RNAs.

SHAPE-MaP | viral RNA structure | evolutionary conservation | functional motif discovery |  
RNA genome architecture

RNA viruses—including dengue, influenza, Ebola, Zika, and coronaviruses—represent 
serious threats to human health. Complex internal RNA structures in the genomes of 
these viruses usurp cellular metabolism and create gene regulation machineries that enable 
viral replication. RNA viruses often contain highly structured and obviously conserved 
RNA elements in their 5′- and 3′-untranslated regions (UTRs) (1–4), and less frequently 
in their coding regions (3, 5), with functions critical to viral replication and fitness. These 
highly conserved elements can often be identified using comparative sequence (or covar-
iation) analysis, and it is likely that most genome regions with highly conserved structures 
and sequences have already been discovered in well-studied RNA viruses. We hypothesized 
that RNA viruses might contain additional, currently undetected, functional structural 
elements across their genomes. We therefore sought to assess if incorporating experimen-
tally determined RNA structure information into a search strategy might make it possible 
to discover new functional elements in related viruses.

Dengue virus (DENV) is a single-stranded, positive-sense, enveloped RNA virus in the 
Flaviviridae family. DENV infection is the leading cause of mosquito-borne viral disease 
in humans (6, 7). The four major DENV serotypes share about 70% nucleotide identity 
but are antigenically distinct (8, 9). First-time DENV infections can cause mild to severe 
dengue (6), and subsequent heterotypic infections are associated with a higher risk for 
severe forms of the disease, resulting in significant mortality (7). DENV threatens more 
than one-third of the human population, and effective vaccines and therapeutics remain 
elusive (10). Discovery of functional elements co-occurring across the genomes of all 
DENV serotypes would facilitate efforts to design antidengue therapies.

The DENV RNA genome is 10.7 kb in length and encodes a single polypeptide that 
is processed into three structural (capsid, membrane and envelope) and seven nonstructural 
(or enzymatic) proteins (11). The 5′- and 3′-UTRs and the first 300 nucleotides of the 
coding region (encoding capsid) contain clearly conserved RNA structures with functions 
critical to the viral replication cycle (1, 5, 9, 12). Well-determined RNA tertiary structures 
are prevalent across a single serotype (DENV2) of dengue, several of which are important 
for viral fitness (13). Long-range RNA–RNA interactions, mapped by crosslinking, occur 
broadly in all four DENV serotypes and show partial conservation (14). Here we inter-
rogated the secondary (base pairing) structure of the RNA genomes for all four DENV 
serotypes.

We find that all DENV genomes are highly structured overall as measured by 
SHAPE-MaP (selective 2'-hydroxyl acylation analyzed by primer extension and mutational D
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profiling) chemical probing, but observed structures are not 
broadly conserved among serotypes. However, by taking a 
structure-first approach, we identified numerous compact genome 
regions with evidence of structural conservation. We found that 
a significant subset of these, newly identified, structure-similar 
RNA motifs affect viral fitness, promote a compact global genome 
architecture, interact with proteins, and regulate viral replication. 
Identifying experimentally defined structural conservation across 
the genomes of related RNA viruses, such as DENV serotypes, 
thus leads directly to discovery of new RNA-mediated functions 
and new opportunities for defining contributors to virial replica-
tion and for interfering with viral fitness.

Results

RNA Structural Conservation and Divergence in the Genomes 
of the Four DENV Serotypes. We used SHAPE-MaP (15, 16) 
chemical probing to obtain comprehensive single-nucleotide 
resolution measurements of RNA structure across full-length 
DENV1, DENV2, DENV3, and DENV4 genomes, gently 
extracted from viral particles (Fig. 1A). SHAPE reactivities were 
used to create high-quality (17) genome-wide secondary structure 
models. Large RNA molecules contain regions both that adopt 
well-determined stable structures and that are structurally dynamic 
and sample multiple conformations (16, 18, 19). We therefore 
calculated base-pairing probabilities across all possible structures in 
the Boltzmann ensembles of structures, consistent with SHAPE data 
for each DENV serotype. These pairing probabilities, visualized as 
arcs, were compared across DENV serotypes (Fig. 1B). Extensive 
prior work has shown that well-determined and highly structured 
RNA elements [termed low SHAPE-low Shannon entropy 
(lowSS) motifs (4, 16); in green in Fig. 1B] are overrepresented 
with functional elements.

As expected, SHAPE-directed models for regions with 
well-determined structures readily identified structures in the 5′- 
and 3′-UTRs and in the 5′ end of the capsid-coding region known 
to be conserved across and functional for the four DENV serotype 
genomes (SI Appendix, Fig. S1) (1, 5, 9, 12). Thus, an experimen-
tally (SHAPE)-informed, structure-first approach recapitulates 
conserved, functionally important motifs. Despite success in reca-
pitulating known functional elements and the notable number of 
well-determined structures observed in each DENV genome, most 
well-determined RNA structures we defined across the four 
DENV genomes are not conserved (Fig. 1B, green arcs), even 
though these genomes share 70% sequence identity.

We therefore took a more focused approach and looked for 
compact, well-determined elements with notable structural sim-
ilarity. Comparative analysis of SHAPE-informed structure mod-
els revealed 22, previously unnoted, RNA motifs with similar 
structures in two or more serotypes (Fig. 1C  and Materials and 
Methods). The sequences of these elements were not as highly 
conserved as structures in and near the 5′- and 3′-UTRs, and their 
levels of structural similarity varied. Nonetheless, individual motifs 
could be identified that clearly showed similar overall RNA archi-
tectures, similar or identical base-paired stems with covarying base 
pairs, and similar or identical hairpin and internal loop sequences 
(Fig. 2 and SI Appendix, Fig. S2). None of these structures had 
been previously identified by conventional covariation analyses.

Structure-Similar RNA Motifs Regulate DENV Fitness. We 
assessed the contribution of structure-similar motifs to viral 
fitness by introducing mutations that individually disrupted 17 
of the 22 elements identified by comparative structural analysis 
and examined these in functional assays (Fig.  3). Mutated 

sequences for five elements could not be recovered without off-
target mutations, despite multiple independent attempts using 
methods optimized for cloning of difficult viral repeat sequences 
(Materials and Methods). Structures are named by their location 
in the RNA genome sequence. We introduced synonymous 
mutations designed to disrupt the structure of these RNA motifs 
(and preserve protein sequence) into a full-length DENV2 RNA 
construct (13) (Fig. 3A and SI Appendix, Fig. S3). Synonymous 
mutations avoided rare codons and minimized changes in overall 
codon usage, nucleotide composition, dinucleotide content, and 
predicted formation of alternate structures to minimize indirect 
effects. Capped wild-type (WT) and mutant DENV2 RNAs were 
transfected into BHK-21 cells, and viral replication and infectivity 
were assessed by measuring intracellular viral RNA and infectious 
viral particles in the supernatant (DENV titer), respectively. As a 
control, we confirmed that known structure-disrupting mutations 
(13) in the NS2A coding-region reduced viral RNA levels and 
infectious particles. Strikingly, 10 of the 17 mutants moderately or 
severely attenuated one or both measures of viral fitness relative to 
WT virus (Fig. 3 B and C), reducing viral RNA or DENV titer by 
at least 50% at 72 h post-transfection. Five mutants reduced levels 
of viral RNA or viral titer by greater than 75% (motifs 2200, 5600, 
7080, 8500, 10000; Fig. 3 B and C). By taking a structure-first 
approach, we thus identified numerous RNA elements in DENV 
genomes important for viral replication.

Multiple Structures Promote a Compact Global Genome 
Architecture. We next examined whether structure-similar RNA 
motifs in the DENV genomes are important for higher-order 
genome architecture and organization. We used dynamic light 
scattering to evaluate the hydrodynamic radii of WT and RNA 
structure-disrupting mutant DENV2 genomes. In the absence 
of protein, WT DENV2 RNA genomes fold into a state with a 
hydrodynamic radius of ~45 nm (Fig. 4A); an intact DENV virion, 
by comparison, has a radius of roughly 25 nm (20), indicating that 
interactions with viral structural proteins in the assembled virion 
further compact genome structure. RNA structure-disrupting 
mutations in five of the 17 elements significantly disrupted 
compaction of the protein-free RNA genome (Fig. 4 A and B), 
reflected as radial size increases of 8 to 15 nm (15 to 25%) and 
30 to 50% increases in mean global genome volume. Of these 
five structural elements, mutations in four also attenuated viral 
fitness in DENV2 functional assays (Fig. 3D). Thus, mutations in 
compact (30 to 70 nucleotide) local RNA structures caused large-
scale changes in global folding of the DENV genome concomitant 
with, in most cases, functional consequences for viral fitness. These 
and other local structures across the DENV genome show low 
SHAPE reactivities in regions modeled to be single-stranded, 
consistent with additional higher-order RNA interactions that 
contribute to genome compaction. These results suggest one 
function of structure-similar DENV RNA motifs is to promote 
a compact global genome architecture.

A Structure-Similar RNA Motif in the Region Encoding NS3 
Plays an Important Role in Replication. We selected two 
structure-similar RNA elements, whose disruption led to severe 
attenuation of viral fitness, for further investigation (the 5600 
and 8500 elements, Fig. 3 B and C). The 5600 element is located 
in the region that encodes NS3 and occurs in serotypes 1, 2, 
and 4. Mutation of this RNA structure [Fig. 5A, 5600mut (the 
original screening mutant)] severely attenuated viral replication, 
reducing viral RNA by 60% and viral titer by 95% at 72 h 
post-transfection (Fig.  5 B and C, 5600mut). We designed 
two additional mutants to further investigate the functional D
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importance of this RNA structure. The first mutant (unzip2) 
disrupted or unzipped this structure by introducing synonymous 
mutations that break five base pairs in the stem (Fig. 5A). These 
five base pairs were chosen as they could be recoded to restore 
base pair formation with additional synonymous compensatory 
mutations in a second mutant (recode2, Fig. 5A). The first mutant 
showed an attenuating functional effect similar to the original 
screening mutant (5600mut), even though it disrupted fewer base 
pairs. The second mutant (recode 2), containing compensatory 
mutations, showed a modest rescue of fitness compared to 
unzip2 in DENV2 infectivity and replicon (discussed below) 
assays (Fig. 5 B–D).

We next examined the role of the RNA structure at position 
5600 using a DENV2 replicon construct, which reports on viral 
translation and replication, but not viral entry or viral packaging 
and assembly steps. In this construct, viral structural protein genes 
are replaced with a Renilla luciferase gene (21, 22). The 5600 
mutations (Fig. 5A) were introduced into the replicon construct. 
The mutations had no effect on replicon reporter expression at 
8 h post-transfection, indicating that translation (which occurs 
relatively rapidly in this system) is unaffected (SI Appendix, 
Fig. S4A). At 72 h post-transfection, levels of replicon reporter 
expression from 5600mut, unzip2, and recode2 mutant constructs 
were attenuated relative to levels of the WT construct (Fig. 5D). 
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The reductions were similar in magnitude as those observed for 
replication and infectivity assays using the full-length DENV 
infectious construct (Fig. 5 B and C). Combined, these results 
suggest that the RNA structure at position 5600 of the DENV2 
genome is important for RNA genome replication but not viral 
entry, translation, or packaging.

A Structure-Similar RNA Motif in the Region Encoding NS5 
Regulates Viral Replication and Packaging and Is Bound by a 
Protein Partner. The 8500 element is located in the NS5-encoding 

region and is present in serotypes 1 and 2. The mutation of this RNA 
structure [Fig. 5E, 8500mut (the original screening mutant)] led to 
the most severely attenuating phenotype in our large functional 
screen (Fig.  5 F and G, 8500mut). We designed two additional 
mutations to individually destabilize the lower or upper stem 
structures in this motif (Fig. 5E, unzip-lower and unzip-upper). 
These two mutants showed intermediate attenuating functional 
effects in DENV2 replication and infectivity assays (Fig. 5 F and 
G) relative to the original screening mutant (8500mut), emphasizing 
the importance of this entire RNA structure for virus function. It was 
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not possible to introduce synonymous compensatory mutations 
to restore the original stem structure. Instead, we designed a 
structure-strengthening mutant by introducing synonymous 
mutations that created additional base pairs (Fig. 5E, lock). This 
locked structure mutant displays a severe attenuating phenotype 
in DENV replication and infectivity assays (Fig. 5 F and G, lock), 
similar to that of the original screening mutant (8500mut). The 

functional role of the 8500 RNA structure thus is finely tuned, 
as structure strengthening and weakening both lead to severe 
attenuation of viral fitness.

In the context of the replicon construct, the 8500 mutations 
had no effect on replicon reporter expression at early time points 
post-transfection, consistent with normal translation (SI Appendix, 
Fig. S4B). At 72 h post-transfection, however, the mutations had 
consistently smaller effects on replicon reporter expression relative 
to the attenuating functional effects observed in replication and 
infectivity assays using the full-length construct (Fig. 5H). This 
difference suggests that the 8500 element functions in packaging 
or entry stages of the viral replication cycle as well as in the repli-
cation stage. Unbiased RNA–protein interaction crosslinking 
experiments (23, 24) in infected cells revealed dense RNA–protein 
crosslinking sites to the 8500 region of the genomic RNA 
(SI Appendix, Fig. S5). Crosslinking was substantially reduced 
when the structure was mutated to form the “locked” structure. 
These observations suggest that protein binding at this RNA struc-
ture is important for its regulatory function.

In sum, follow-up investigations of the structure-similar RNA 
motifs at 5600 and 8500 (Fig. 5) provide evidence that the struc-
tures these RNA elements form, rather than the encoded sequence, 
are important for their functions. Further investigation of the 
2200 RNA element, present in the Env-encoding region of all 
four serotypes, also supports the importance of RNA structure for 
its function (SI Appendix, Fig. S6).

Discussion

RNA viruses densely encode RNA-based information in their 
small genomes. Most viral RNA structures characterized to date 
are located in 5′- and 3′-UTRs, where covariation analyses can 
identify highly conserved, functional structures. Identifying func-
tional elements within coding sequences or that show more mod-
est levels of conservation is much more challenging. We 
hypothesized that RNA structure might provide a powerful guide 
for discovering new functional elements in RNA viruses, including 
elements for which sequence conservation is not readily detectable. 
This strategy proved remarkably efficient and successful: we char-
acterized structures across the entire genomic RNAs of the four 
DENV serotypes, identified 22 previously unnoted structure-
similar motifs, were physically able to test 17 of these (in one of 
the largest screens of viral RNA structure and function to date), 
and identified 10 RNA structures that affect viral fitness. Our 
work significantly expands the list of known functional RNA ele-
ments in the DENV genome and reveals that DENV (and likely 
other RNA viruses) extensively exploits RNA structure-based 
mechanisms, based on motifs in the protein-coding regions of 
their genomes. These RNA motifs function to promote a compact 
global genome architecture, interact with proteins, and regulate 
the DENV replication cycle (Fig. 6A).

Using synonymous codon substitutions, it was remarkably 
straightforward to disrupt RNA motifs with similar structures 
across DENV serotypes and thereby create attenuated viruses. This 
insight directly motivates a strategy for designing live-attenuated 
vaccines with a reduced likelihood of reversion to virulence. Four 
RNA elements whose disruption led to attenuated viruses (2200, 
5600, 7920, and 10000) simultaneously encode amino acid 
sequences overlapping key functional motifs in DENV proteins 
(Fig. 6B and SI Appendix, Fig. S7 and Table S1). 2200 encodes a 
part of a domain in Env (termed the stem) that mediates a con-
formational change involved in viral fusion (25). 5600 encodes a 
domain in the NS3 helicase involved in sequence-specific recognition 
of viral RNA (26). Two elements, 7920 and 10000 fall in NS5. 
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Fig.  5. Regulation of viral fitness by RNA elements 5600 and 8500. (A) 
Structure-disrupting [5600mut (original screening mutant) and unzip2] and 
structure-restoring (recode2) mutations (blue) in the 5600 RNA element. 
(B–D) Effects of mutation in the 5600 element on (B) replication, quantified by 
measuring intracellular DENV RNA relative to WT, (C) infectivity, quantified by 
measuring infectious viral particles in the supernatant (DENV titer) relative to 
WT, and (D) replicon reporter expression relative to WT, post-transfection of 
full-length or replicon RNA. (E) Structure-disrupting [8500mut (original screening 
mutant), unzip-lower, and unzip-upper] and structure-strengthening (lock) 
mutations (blue) in the 8500 RNA element. (F–H) Effects of mutation on (F) 
replication, (G) infectivity, or (H) replicon reporter expression. WT secondary 
structures are colored by SHAPE reactivity (see scale in A). The 5600mut and 
8500mut mutants are the same as those shown in Fig. 3. Values plotted as mean 
± SEM of three biological replicates; †P < 0.15; *P < 0.05; **P < 0.01; ***P < 
0.001; n.s., not significant; two-tailed unpaired t test.
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7920 encodes the pocket in the MTase (methyl transferase) 
domain that recognizes conserved nucleobases at the 5′ start of 
the genome and the SAM (S-adenosyl methionine) cofactor (27). 
10000 overlaps the RdRp (RNA dependent RNA polymerase) 
domain and encodes a portion of the polymerase priming loop 
that enables RNA polymerization in the absence of a primer 
strand (27). These four regions are thus under dual evolutionary 
constraints, at both RNA structure and protein coding sequence 
levels, and face heightened barriers to reversion. In addition, small 
molecule inhibitors targeting doubly-constrained regions at the 
RNA and protein levels might encounter greater impediments to 
the development of viral resistance, perhaps especially for DENV 
NS5 RdRp inhibitors (SI Appendix, Fig. S7) (28, 29).

Well-defined (highly structured and low entropy) motifs are 
common and ubiquitous throughout each of the four DENV 
genomic RNAs (Figs. 1 and 6A). Widespread formation of inter-
nal secondary structure in large RNAs is now clearly an unre-
markable and expected result (16). The observation of extensive 
internal structure is consistent with our previous findings in the 

DENV2 genome (13), with independent studies of positive-sense 
RNA viruses (4, 14, 15, 30–36), and for essentially all large 
RNAs (16, 37, 38). Structure-first analysis further revealed that, 
although well-defined structures are common, most RNA struc-
tures in coding regions are not strongly conserved across sero-
types. Extensive structural divergence between variants or 
serotypes has also been observed for the genome coding regions 
of RNA viruses from lentivirus, hepacivirus, and alphavirus gen-
era (31, 34, 39). Lack of conservation does not preclude func-
tional importance. For example, a subset of genome structures 
important for function in HIV-1 and Sindbis virus are not con-
served in the related simian immunodeficiency and Venezuelan 
equine encephalitis viruses, respectively (34, 39). In addition, 
RNA viruses may require a general architecture in a specific 
genome region, rather than requiring specific individual struc-
tures to function. For example, multiple studies find that related 
RNA viruses often contain highly or lowly structured regions, 
respectively, at similar genome locations (14, 31, 34, 35, 40). 
Well-defined RNA secondary structures also often create 

genome
compaction

highly conserved
UTR structures larger structures

not conserved

regulate viral
replication smaller motifs

conserved

protein
binding

5′

3′

serotype-specific
structures

protein stem
region

encoded by
2200 RNA 

encoded by
5600 RNA 

RNA
substrate

NS3

encoded by
10000 RNA

(protein
priming loop) MTase

domain RdRp
domain

NS5
encoded by
7920 RNA 

RNA substrate

SAH

Env

GDD
catalytic site

B

A

Fig.  6. Classes of functional viral RNA genome structures. (A) 
RNA genomes of related viruses contain serotype-specific RNA 
structures, highly conserved RNA structures (primarily in the 5′- and 
3′-UTRs), and internal coding-region RNA structures with varying 
degrees of conservation. Structure-similar coding-region motifs 
play diverse functions including promoting genome compaction, 
interacting with protein binding partners, and regulating specific 
stages of the viral replication cycle. (B) Visualization of RNA 
sequences with functional roles at both protein-coding and RNA-
structure levels. Functional regions in DENV Env (PDB: 3J27), NS3 
(5XC6), and MTase and RdRp domains of NS5 (5DTO) proteins are 
encoded by functional RNA structure motifs 2200, 5600, 7920, 
and 10000, respectively. RNA and protein sequences, with protein 
structures and functions, are shown in greater detail in SI Appendix, 
Fig. S7.
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accessibility-switches, either occluding or presenting key func-
tional motifs, where a specific structure is not required but the 
simple formation of some kind of structure is (41).

Each of the structure-similar RNA motifs we identified across 
DENV coding sequences (Fig. 6A) has a precedent among func-
tional elements found previously in non-coding regions. Five RNA 
structures (950, 2550, 6700, 7240, and 8500) promote a compact 
global genome architecture. We hypothesize, first, that genome 
compaction facilitates assembly of viral replication complexes and 
of RNA packaging into the limited space within the virion and, 
second, that there are many RNA-structure-directed ways to accom-
plish these functions. Analogously, the more compact circularized 
conformation of the DENV RNA genome (as compared to the 
linear conformation) is required for packaging into a virion, con-
sistent with a link between genome compaction and viral packag-
ing (13). Two structure-similar motifs (5600, 8500) are important 
specifically for viral replication, and one of these (8500) also func-
tions in packaging or entry. Similarly, RNA structures regulating 
replication, packaging, or both, viral stages have been identified in 
the 5′- and 3′-UTRs of the DENV genome (1, 5, 9). The 8500 
element specifically also appears to bind a protein partner; again 
similarly, RNA viruses use structures in their 5′- and 3′-UTRs to 
mediate interactions with proteins (3, 42, 43). This work ultimately 
significantly extends our understanding of the extent to which infor-
mation for function is encoded in viral RNA genomes beyond 
sequence alone, at the level of higher-order RNA structure, and sets 
the stage for future investigations in other RNA viruses.

In sum, structure-first comparison of DENV RNA genomes 
led to the efficient discovery of multiple novel functional RNA 
elements across DENV serotypes, specifically across coding 
regions. Most coding-region structures display weaker signatures 
of conservation than UTR region structures, but many still play 
important roles in viral fitness. Identification of structure-similar 
RNA motifs will likely be broadly useful for the discovery of 
RNA-mediated functions that are not immediately detectable at 
the sequence level in diverse other viral RNA genomes, and poten-
tially in messenger RNAs and long noncoding RNAs. Efficient 
discovery of conserved functional elements in related RNA viruses 
outlines a pathway for development of antiviral therapies and 
live-attenuated vaccines that inclusively target multiple serotypes, 
genotypes, or strains of a virus. Broadly, functional RNA motifs, 
like those found to have similar structures in multiple DENV 
genomes, are harbingers for new biological roles of higher-order 
RNA structure and are potential targets for RNA-directed 
therapeutics.

Materials and Methods

Complete, detailed descriptions of all methods, including stepwise descriptions 
of the data analysis pipelines, are provided in the SI Appendix.

RNA Structure Probing. Structure probing experiments were performed on RNA 
gently extracted from purified virions [DENV1 (strain: West Pacific 74), DENV2 
(strain 16681), DENV3 (CH53489), and DENV4 (TVP-360)] avoiding heating, metal 
ion chelation, ethanol precipitation, and other potentially denaturing steps (13). 
RNA was modified with the SHAPE reagent 1-methyl-7-nitroisatoic anhydride 
(1M7)  (44). SHAPE-MaP and RNP-MaP experiments, library preparation, and 
sequencing were performed as described (23, 44).

Pipeline for Identifying Structure-Similar Motifs. We devised a strategy for 
specifically identifying structure-similar RNA motifs, colocalized in defined local 
regions across the four DENV RNA genomes. The pipeline, with details given below, 
involved: 1) Sequence alignment and mutation parsing, 2) secondary structure 
modeling, 3) initial analysis of structure-similar RNA motifs among DENV serotypes, 
and 4) three-model strategy for defining structure-similar RNA motifs.

Sequence Alignment and Mutation Parsing. FASTQ files from sequencing 
runs were inputted into ShapeMapper 2 (45) for read alignment, mutation count-
ing, and SHAPE reactivity profile generation. Median read depths of all SHAPE-
MaP and RNP-MaP samples and controls were greater than 50,000; nucleotides 
with read depths of less than 5,000 were excluded from analysis.

Secondary Structure Modeling. Superfold (44) was used with SHAPE reac-
tivity data to inform RNA structure modeling. Default parameters (except that 
the maximum pairing distance was set to 300 nt) were used to generate base-
pairing probabilities for all nucleotides and minimum free energy structure 
models. These parameters yielded good models for previously characterized 
structures in the 5′- and 3′-UTRs (SI Appendix, Fig. S1). Local median SHAPE 
reactivities were calculated over centered sliding 55-nt windows to identify 
structured RNA regions.

Initial Analysis of Structure-Similar RNA Motifs among DENV Serotypes. 
DENV1, DENV2, DENV3, and DENV4 genome structure models were displayed as 
base pairing probability arcs (max pairing distance of 300 nt) and viewed as four 
tracks in the Integrative Genomics Viewer (IGV) (46). These comparisons revealed 
well-determined RNA structures [with high probability (>80%) base pairs] in the 
5′- and 3′-UTRs and the 5′ end of the capsid-coding region (including cHP and 
DCS-PK structures; capsid-coding region hairpin and downstream of 5′ cyclization 
sequence pseudoknot, respectively), as expected, reflecting known conservation 
across the four DENV serotype genomes. Each serotype further contained numer-
ous additional well-determined structures, only a small fraction of which showed 
potential conservation across serotypes.

Three-Model Strategy for Defining Structure-Similar RNA Motifs. Superfold 
was used to generate two additional structure models for each serotype with 
maximum base-pairing distances set to 100 and 600 nts. For each individual 
serotype, base pairing probability arcs for each of the three structure models 
were visualized as three tracks in a single IGV session file. RNA structure motifs 
with pairing probabilities >30% that were modelled identically in all three struc-
ture models for an individual serotype were selected as search motifs to query 
the other serotypes for similar structures; base pairs with pairing probabilities 
>30% in any of the three structure models of the other serotypes were accepted 
as potential support for similar structures. To be selected as similar structures for 
functional analyses, entire structures or substructure motifs (dashed boxes in 
SI Appendix, Fig. S2) were required to be identically sized and located at similar 
genome locations, or meet defined similarity thresholds in structure, size, or 
sequence (Fig. 2 and SI Appendix, Fig. S2). Structure-similar RNA elements were 
required to occur in DENV2 to leverage established DENV2 functional assays (13).

Design of RNA Structure-Disrupting DENV Mutants. Sequences were gen-
erated by introducing synonymous mutations designed to disrupt base pairing 
in the SHAPE-directed structural model. Mutant sequences were chosen to: 1) 
avoid rare codons, 2) minimize change in overall codon usage, minimize change 
in 3) nucleotide composition and 4) dinucleotide content, and 5) minimize for-
mation of alternate structures. Structures for mutant sequences were modeled 
using Superfold to confirm disruption of the WT structure and to avoid sequences 
that altered neighboring structural elements. Mutants were generated in the 
context of p16681-T7G, which is based on the full-length DENV2 infectious clone 
p16681 (13).

Physical Size Evaluation and Phenotypic Analysis of DENV Mutants. RNA 
was synthesized and transfected as described (13). Dynamic light scattering 
experiments were performed on uncapped, in vitro transcribed, refolded DENV2 
RNA (13). Replication assays were performed using capped in vitro transcribed 
RNA (13, 23). Viral translation and replication was measured for RNA structure-
disrupting mutations in the 5600 and 8500 elements using a Renilla luciferase-
expressing DENV2 replicon assay (22). RNP-MaP treatment was performed on 
infected cells and RNP-MaP site densities (23) were calculated over centered 
sliding 15-nt windows to compare WT and mutant RNAs.

Data, Materials, and Software Availability. All software employed in this paper is 
published. ShapeMapper 2 (45) and Superfold (44) are available at https://weekslab. 
com/software (under “ShapeMapper 2” and “SHAPE-MaP” headings, respectively) 
and at https://github.com/weeks-unc (in the “shapemapper2” and “Superfold” D
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repositories, respectively). VARNA (47), IGV (46), and Sequence Manipulation Suite 
2 (48) are third-party, open-source software. Raw and processed sequencing data-
sets analyzed in this study have been deposited in the Gene Expression Omnibus 
(GEO) database, https://www.ncbi.nlm.nih.gov/geo/ (accession number GEO: 
GSE226865). All other data are included in the article and/or SI Appendix.
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