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SUMMARY
7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-
TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells
remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP
(deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reac-
tivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state
in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a
large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling
at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and
stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that
RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcrip-
tion and establishes the power of DANCE-MaP to define RNA dynamics in cells.
INTRODUCTION

RNA molecules fold into complex secondary and tertiary struc-

tures that direct broad regulatory functions (Sharp, 2009; Cech

and Steitz, 2014). Most RNAs can fold into more than one struc-

ture, which enable RNAs to function as regulatory switches that

change conformation in response to ligand or protein binding

(Dethoff et al., 2012). Diverse riboswitches have been identified

in mRNAs that regulate transcription, splicing, and translation

in response to metabolites (Breaker, 2012) and proteins (Ray

et al., 2009; Fu et al., 2013). Large-scale RNA structural dy-

namics are also critical to the function of ribonucleoprotein

(RNP) complexes such as the ribosome (Rodnina et al., 2017;

Sengupta et al., 2019) and the spliceosome (Wilkinson et al.,

2020). Despite their broad importance, RNA switches remain

exceedingly difficult to identify, quantify in terms of their struc-

ture and in-cell equilibria, or link to functional outcomes.

The 7SK RNA is the 332-nucleotide noncoding RNA compo-

nent of the 7SK small noncoding RNA-protein complex (snRNP)

(Peterlin et al., 2012; Quaresma et al., 2016). 7SK is principally

thought to function by sequestering Cdk9/Cyclin T1 (termed

positive transcription elongation factor b, P-TEFb), a key tran-

scription factor that phosphorylates RNA polymerase II (RNA
1708 Molecular Cell 82, 1708–1723, May 5, 2022 ª 2022 Elsevier Inc
Pol II) paused at promoter-proximal regions to facilitate produc-

tive elongation (Peterlin et al., 2012; Quaresma et al., 2016). The

7SK snRNP also regulates splicing (Barboric et al., 2009; Egloff

et al., 2017; Ji et al., 2021) and chromatin remodeling (Eilebrecht

et al., 2011; Flynn et al., 2016). The functions of the 7SK snRNP

are driven by coordinated changes in its bound protein compo-

nents. The core snRNP is stabilized by the proteins MePCE—

which methylates and remains bound to the 50 phosphate of

7SK RNA (Yang et al., 2019)—and LARP7—which binds to the

RNA 30 end (Krueger et al., 2008; Eichhorn et al., 2018). P-

TEFb is sequestered through interactions with the accessory

protein dimer HEXIM1/2, which binds to the 7SK RNA at a

high-affinity stem-loop structure, SL1 (Peterlin and Price, 2006;

Czudnochowski et al., 2010; Martinez-Zapien et al., 2016).

Upon stimulation of transcription, various factors act on 7SK to

liberate P-TEFb and HEXIM1/2 (Peterlin et al., 2012; Quaresma

et al., 2016). The P-TEFb-free 7SK is subsequently bound by

distinct proteins and likely has a heterogenous composition (Pe-

terlin et al., 2012; Quaresma et al., 2016). An understanding of

7SK regulatory mechanisms will both illuminate fundamental as-

pects of transcriptional control and also inform ongoing efforts to

inhibit transcription in disease settings, especially cancer (Olson

et al., 2018) and, conversely, to reverse transcriptional latency of
.
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HIV as part of a cure strategy (Cary et al., 2016; Margolis

et al., 2020).

Multiple studies have indicated that P-TEFb binding and

release involves remodeling of the 7SK RNA structure (Krueger

et al., 2010; Flynn et al., 2016; Brogie and Price, 2017). However,

7SK structure and its dynamics remain poorly defined. 7SK se-

quences are extraordinarily conserved, limiting informative

evolutionary covariation analysis (Rivas et al., 2017; Kalvari

et al., 2021). Several structure models for 7SK have been pro-

posed based on chemical probing experiments (Wassarman

and Steitz, 1991; Marz et al., 2009; Brogie and Price, 2017;

Luo et al., 2021), but the heterogeneity of 7SK challenges inter-

pretation of these ensemble-average measurements.

Single-molecule chemical probing is emerging as a transfor-

mative approach for characterizing RNA structure and dynamics

in living cells. These technologies are made possible by muta-

tional profiling (MaP) reverse transcription, whereby a polymer-

ase reads through multiple chemical adducts per RNAmolecule,

recording them as mutations in complementary DNA (Homan

et al., 2014). Massively parallel sequencing is then used to mea-

sure correlated modification events across thousands tomillions

of molecules, yielding information on RNA structural ensemble

composition (Homan et al., 2014; Tomezsko et al., 2020; Mor-

andi et al., 2021) and through-space secondary (Krokhotin

et al., 2017; Cheng et al., 2017; Mustoe et al., 2019) and tertiary

(Homan et al., 2014; Dethoff et al., 2018; Sengupta et al., 2019)

interactions. Although powerful, existing single-molecule anal-

ysis frameworks only extract one type of information at a time:

Ensemble deconvolution strategies can measure multiple coex-

isting per-nucleotide reactivity profiles but do not directly mea-

sure base pairs. Conversely, the coexistence of multiple RNA

structures makes it challenging to disambiguate direct base

pair and tertiary interaction measurements.

To overcome these issues, we developed DANCE-MaP (de-

convolution and annotation of ribonucleic conformational en-

sembles), a maximum likelihood (ML) strategy that extracts

and annotates a large fraction of the total information from sin-

gle-molecule chemical probing experiments. DANCE-MaP

directly visualizes complex RNA ensembles based onMaP prob-

ing data at nucleotide resolution, including detection of base

pairs and tertiary interactions, in a single experiment. We exten-

sively benchmarked this strategy by analyzing the adenine ribos-

witch and uncovered significant complexity, even within this

well-defined RNA structural ensemble. We then applied

DANCE-MaP to discover a large-scale allosteric switch in the

7SK RNA that links P-TEFb release and cell state-specific tran-

scriptional regulation to concerted remodeling of the 7SK struc-

ture. Our work establishes DANCE-MaP as a powerful frame-

work for resolving complex RNA structural ensembles in cells

and for linking these structures to function.

RESULTS

Deconvolution of complex RNA ensembles with
thermodynamic accuracy
In single-molecule chemical probing experiments, each MaP

read represents a structural snapshot of an individual RNA

molecule. For RNAs that fold into multiple structures, each
structure will generate distinct groups of reactive and unreac-

tive nucleotides that are comodified or unmodified in a corre-

lated manner (Homan et al., 2014). We implemented a ML

framework that uses a modified Bernoulli mixture model to fit

single-molecule reads to multiple reactivity profiles, sequen-

tially increasing the number of fitted states until the optimal so-

lution is identified (Figures 1A, 1B, and S1). Our ML strategy,

developed independently, shares an architecture used previ-

ously (Tomezsko et al., 2020) but includes adjustments to

handle missing data, improve robustness, and capture informa-

tion from all four RNA nucleotides. Under idealized scenarios,

our ML framework can deconvolute ensembles consisting of

up to five states with populations R5% (Data S1). Deconvolu-

tion accuracy breaks down as ensemble heterogeneity in-

creases to four or more highly divergent states, meaning that in-

dividual deconvoluted states may contain residual structural

heterogeneity. Overall, reactivity profiles and populations are

resolved with mean errors of <1% for ensembles consisting

of distinctive states.

We validated our ML framework using the Vibrio vulnificus add

adenine riboswitch, which folds into a two-state ensemble con-

sisting of a translation OFF state that occludes the Shine-Dal-

garno sequence and a translation ON state that binds adenine

(Reining et al., 2013). Structure probing experiments were per-

formed on an in vitro transcribed RNA using dimethyl sulfate

(DMS) under conditions where the reagent reacts with all four nu-

cleotides (Mustoe et al., 2019). When analyzed by a conventional

averaged reactivity profile, the riboswitch appears to fold into a

single well-defined structure (Figure 1C). By comparison, decon-

volution with our ML framework yields structuresmatching those

of the translation ON and OFF states at a ratio of 40:60 (Figures

1C–1E), in agreement with independent measurements (Reining

et al., 2013). We adapted algorithms developed for SHAPE prob-

ing analysis (Siegfried et al., 2014; Smola et al., 2015a; Weeks,

2021) to compute pairing probabilities guided by DMS reactiv-

ities (Mustoe et al., 2019). Pairing probability analysis revealed

notable heterogeneity in the P2alt region in the OFF state (Fig-

ure 1E), consistent with prior observations (Reining et al., 2013;

Tomezsko et al., 2020), which would be challenging to identify

using standard minimum free-energy approaches. We also

observe the potential for an extended P1 pairing (P1ext) in the

ON state (Figure 1E).

We next tested the ability of ourML framework tomeasure add

riboswitch switching in response to adenine binding. The popu-

lation of the ON state increases exactly as expected following

the adenine binding isotherm, enabling us to compute a Kd z
2 mM in agreement with literature values (Figure 1F) (Reining

et al., 2013). Consistent with prior studies (Warhaut et al.,

2017; Tomezsko et al., 2020), both OFF and ON conformations

are populated even at saturating adenine ligand (Figures 1F

and S2). The OFF state reactivity profiles are essentially identical

at all adenine concentrations (Figure 1G, bottom). By contrast,

reactivity changes within the ligand-binding pocket of the ON

state indicate adenine-induced stabilization of the aptamer

domain tertiary structure (Figure 1G, top). The ability to resolve

ligand-binding thermodynamics and subtle state-specific struc-

tural changes is unique to our study and validates the precision

of our ML deconvolution implementation.
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Figure 1. Maximum likelihood deconvolution enables thermodynamically rigorous analysis of RNA conformational ensembles

(A and B) Schematic of single-molecule chemical probing and ML ensemble deconvolution. RNAs with multiple structures generate distinctive chemical

modification patterns. (A) Conventional analysis yields a single, average per-nucleotide reactivity profile thatmay not be representative of any underlying structure

state. (B) ML analysis reveals reactivity profiles and populations of each state.

(C) Averaged and deconvoluted DMS-MaP data for the ON and OFF states of the add adenine riboswitch in the absence of ligand. High, medium, and low DMS

reactivities are shown in red, yellow, and black, respectively. Major reactivity differences are shaded.

(D) Deconvoluted MaP data for the add riboswitch in the absence of ligand, superimposed on the NMR-defined (Reining et al., 2013) ON and OFF states. MutON

(Reining et al., 2013) and MutOFF mutants are also illustrated. The add RNA is numbered per prior convention (Reining et al., 2013).

(E) State-specific pairing probabilities for the ON and OFF states computed from deconvoluted reactivity profiles.

(F) Population of the ON state as a function of adenine concentration for native and mutant sequences. Reported Kd represents the mean ± SD from fits to two

independent datasets.

(G) Reactivities for the ON andOFF states as a function of adenine concentration. Regions that undergo adenine-dependent protection are emphasized with gray

shading.

See also Figures S1 and S2 and Data S1.

ll
Article

1710 Molecular Cell 82, 1708–1723, May 5, 2022



ll
Article
We further validated our approach using mutants that perturb

the OFF-ON equilibrium. Consistent with other studies (Reining

et al., 2013; Warhaut et al., 2017; Tian et al., 2018), destabilizing

the P2alt helix via the MutON mutation only modestly shifted the

equilibrium toward the ON state (Figure 1F); we discovered that

this incomplete shift is due, in part, to the creation of a misfolded

third state (Figure S2). Destabilizing P2 via our MutOFF mutation

switched the equilibrium to 65:35 between OFF and a state

that is not adenine responsive (Figures 1F and S2). Collectively,

these data validate the robustness and thermodynamic accu-

racy of our ML deconvolution framework.

Direct measurement of base pairs and tertiary
interactions for individual RNA states
ML deconvolution provides critical insights into ensemble

composition and populations; however, the set of RNA base

pairs must be inferred via structure modeling. Modeling is often

ambiguous, with multiple pairings compatible with the same

data. Bound proteins can further complicate data interpretation

(Smola et al., 2015b). Potential tertiary interactions are also not

observed. Single-molecule probing data can address these

challenges and contain characteristic correlations that directly

report on through-space base pairing (PAIRs) and tertiary inter-

actions (RINGs) (Figure 2A) (Homan et al., 2014; Mustoe et al.,

2019). We developed a read assignment strategy that, in combi-

nation with our ML deconvolution approach, enables simulta-

neous measurement of per-nucleotide reactivity profiles and

state-specific base pairing and tertiary interactions in complex

structural ensembles. We term this approach deconvolution

and annotation of ribonucleic conformational ensembles

measured by mutational profiling (DANCE-MaP). Analysis of

simulated MaP datasets confirmed that DANCE-MaP enables

accurate measurement of state-specific RING and PAIR correla-

tions (STAR Methods; Figure S1; Data S1).

Without ML deconvolution, PAIR and RING analyses of add ri-

boswitch DMS-MaP data yielded a dense, ambiguous mesh-

work of correlations (Figure 2B). In contrast, DANCE-MaP re-

vealed a specific and near-complete network of direct PAIR

interactions that clearly define the ON and OFF state secondary

structures (Figure 2C). Equally striking, RINGs identify the L2-L3

loop-loop tertiary interaction in the ON state (Figure 2C), which

forms even in the absence of ligand (Warhaut et al., 2017). These

data were reproducible across a comprehensive adenine titra-

tion and in the MutON mutant (Figure S2). In sum, DANCE-MaP

enables complete multistate structural analysis within a single,

concise chemical probing experiment.

Native 7SK RNA exists as a multistate structural
ensemble
To evaluate the 7SK RNA structural ensemble and its role in

regulating transcription, we performed DMS-MaP experiments

on living human Jurkat cells and obtained single-molecule

DMS probing data (>300,0003 coverage) for the 7SK RNA. Con-

ventional averaging analysis yielded per-nucleotide reactivity

profiles generally compatible with previously proposed SL1,

SL3, and SL4 structures (Wassarman and Steitz, 1991; Marz

et al., 2009) (Figure 3A). However, as observed previously (Was-

sarman and Steitz, 1991; Krueger et al., 2010; Brogie and Price,
2017; Wang et al., 2019), many nucleotides exhibit intermediate

reactivities, consistent with significant structural heterogeneity.

ML single-molecule analysis indicated that 7SK structural het-

erogeneity resolves into three states: A (40% ± 3 of the popula-

tion), B (47% ± 2), and H (13% ± 2) (Figure 3A). In-cell state pop-

ulations and reactivity profiles were highly reproducible over 10

biological replicates performed years apart (R > 0.97; Table

S1). The minority H state is characterized by high reactivity

across the RNA, indicating that this state is heterogenous. The

majority A and B states have regions of punctate high and low

nucleotide reactivity, consistent with well-defined structural

states. Nucleotides throughout the SL1 region, including U28,

U30, U66, and U68, are unreactive in state A but reactive in

states B and H. This region was previously shown to change

conformation upon P-TEFb release (Krueger et al., 2010; Brogie

and Price, 2017). Differences between the A and B states were

also observed elsewhere in the RNA, such as in the regions flank-

ing SL3.

Experiments performed on extracted and refolded RNA from

Jurkat cells (referred to as cell free) indicated that 7SK also pop-

ulates three states in the absence of proteins: A (43% ± 8), B

(29% ± 6), and a cell-free-specific mixed M state (28% ± 1) (Ta-

ble S1). Cell-free states A andB are the same as observed in cells

and exhibit only diffuse reactivity protections and enhancements

(Figure 3B), implying that these states are dynamically rather

than stably bound by proteins in cells. The M state is well struc-

tured and appears to be an intermediate between A and B (Fig-

ure S3). The lack of the M state in cells suggests that bound

cellular factors specifically favor the A and B states. In sum,

the 7SK RNA encodes two primary states that are energetically

balanced and which behave similarly with or without bound

proteins.

Direct base pair mapping and structure modeling reveal
7SK architecture
We next obtained higher depth sequencing datasets (>3 million

reads) that provide power sufficient to detect through-space

PAIRs and RINGs across the 7SK RNA. These data revealed

numerous PAIR signals that directly report base-paired struc-

tural elements distinctive to each state (Figure 3C) and that

were reproducible between in-cell and cell-free environments

and across consolidated replicates (Figure S4). We used PAIR

data in combination with per-nucleotide reactivity profiles to

build detailed secondary structure models for the A and B states

(Figures 3D and S3). Residual heterogeneity indicates that states

A and B should be interpreted as class averages rather than pure

states, but each state possesses defining structural features that

support a link between 7SK conformational dynamics and P-

TEFb binding and release.

State A is the P-TEFb binding-competent state with a

dynamic SL0 stem

State A blends features predicted by early probing studies (Was-

sarman and Steitz, 1991) and more recent evolutionary analyses

(Marz et al., 2009) (Figure S5). The SL1 helix is the defining struc-

tural feature of state A and is supported by PAIRs detected both

in cells and in-cell-free RNA (Figure 3C). SL1 has been exten-

sively validated as the recognition site for HEXIM1/2 and P-

TEFb based on in vitro binding assays (Lebars et al., 2010;
Molecular Cell 82, 1708–1723, May 5, 2022 1711
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tertiary interactions, respectively.

(B) PAIR and RING analyses of composite (nondeconvoluted) add riboswitch data measured in the absence of adenine ligand. PAIRs are shown at top, su-

perimposed on the modeled secondary structure state (light gray). High and moderate confidence PAIRs (called principal and minor previously; Mustoe et al.,

2019) are dark and light blue, respectively. RINGs are shown at bottom, colored according to statistical significance.

(C) Left: DANCE-MaP deconvolution of add riboswitch data. Arrows highlight state-specific PAIRs only observed upon deconvolution. Middle: PAIR and RING

correlations superimposed on standard secondary structure diagrams. Right: ON state RINGs superimposed on the crystal structure of the aptamer domain

(PDB: 4tzx; Zhang and Ferré-D’Amaré, 2014).

See also Figures S1 and S2 and Data S1.
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Martinez-Zapien et al., 2016), analysis of P-TEFb-bound 7SK

fractions from cells (Brogie and Price, 2017), and in-cell func-

tional assays (Egloff et al., 2006; Fujinaga et al., 2014). The pop-

ulation of state A in cells, 40%, is also consistent with the esti-

mated fraction of 7SK bound by P-TEFb (Nguyen et al., 2001;

Yang et al., 2001). Thus, we assign state A as the P-TEFb-bound

state.

Structure modeling indicates that this P-TEFb-bound state

contains a long-range pairing interaction, SL0, between the

50 and 30 ends that ‘‘circularizes’’ the RNA in cells (Marz et al.,

2009). We lack data for the 50 strand of SL0 due to overlap
1712 Molecular Cell 82, 1708–1723, May 5, 2022
with the primer binding site, but the 30 strand of SL0 is lowly to

moderately reactive, consistent with formation of a dynamic,

partially stable stem (Figures 3 and S3). By comparison, cell-

free 7SK RNA features an alternative extended form of SL1,

incompatible with SL0 (SL1ext; Figure 3C). The increased stabil-

ity of SL0 in cells is likely due to favorable interactions between

MePCE and LARP7 proteins, which are bound to the 50 and 30

ends of the 7SK RNA (Muniz et al., 2013; Eichhorn et al., 2018;

Yang et al., 2019); indeed, SL0 pairing facilitates MePCE-

LARP7 interactions in vitro (Brogie and Price, 2017). Given that

SL0 is clearly present in state B (Figures 3 and S3), our data
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(legend on next page)
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thus support that the 7SK RNP primarily exists in a ‘‘circular’’

form in cells.

Additional structural features include the SL2, SL3, and SL4

stems, proposed in prior studies (Wassarman and Steitz, 1991;

Marz et al., 2009; Brogie and Price, 2017). PAIR signals provide

direct validation of the SL2 and SL3 stems (Figures 3C and 3D).

PAIR analysis further reveals a long-range SL3a interaction (Fig-

ure 3C). We also performed RING analysis to search for potential

tertiary interactions but did not observe compelling RING signals

(Figure S4).

State B is the P-TEFb-released state with remodeled

SL1 and a compact central core

State B has a dramatically remodeled structure without close

literature precedent (Figures 3CandS5).Most notably, SL1 is ab-

sent. Instead, this region folds into the previously postulated

SL1alt stem (Krueger et al., 2010; Brogie and Price, 2017).

Although overlapwith the primer binding site precludesmeasure-

ment of SL1alt-specific PAIRs, per-nucleotide DMS reactivities

and pairing probabilities clearly support SL1alt. P-TEFb does

not bind to the isolated SL1alt hairpin (Czudnochowski et al.,

2010; Fujinaga et al., 2014), and P-TEFb binding to full-length

7SK converts SL1alt to SL1 in vitro (Brogie and Price, 2017).

Conversely, the release of P-TEFb induces conversion of SL1

to SL1alt (Krueger et al., 2010; Brogie and Price, 2017). Thus,

we conclude that state B constitutes the P-TEFb-released state.

State B additionally features a major extension of SL2, which

we term SL2ext, not predicted by prior analyses (Figures 3C

and S5). SL2ext is directly supported by PAIRs in both in-cell

and cell-free RNAs. PAIR analysis was essential for resolving

these interactions: SL2ext is not predicted when structure is

modeled only using per-nucleotide reactivities (Figure S3). Mod-

erate DMS reactivities indicate that SL2ext is dynamic, and these

dynamics are enhanced in cells, consistent with binding of this

region by proteins (Van Herreweghe et al., 2007; Ji et al., 2013;

Flynn et al., 2016). The consistency between cell-free and in-

cell PAIRs leads us to conclude that SL2ext is a consensus

feature of state B (Figure 3D).

RING analysis revealed a dense network of correlations in

state B (Figures 3D and S4). Some of these RINGs are likely indi-

rect and reflect unresolved minor states. Nonetheless, the con-

sistency and density of observed RINGs suggest that state B

contains a compact central core stabilized by dynamic tertiary

interactions.

Combined, these data reveal that SL1alt is coupled to the for-

mation of a distinctive central domain structure, featuring SL2ext

and a compact core. This model rationalizes prior observations

that in full-length 7SK, SL1alt is stabilized by high salt concentra-

tions (Brogie and Price, 2017). Importantly, this model also im-
Figure 3. 7SK RNA intrinsically codes for a large-scale structural switc

(A) Averaged and DANCE-deconvoluted reactivity profiles for 7SK RNA in cells.

Population averages and standard deviations were computed over 10 replicates

(B) Comparison of state A and B per-nucleotide reactivities for in-cell and cell-fre

(C) In-cell and cell-free structural models for states A and B. Modeled base pairin

(D) Consensus secondary structure models for state A (left) and state B (right). Pe

shown with orange lines. PAIRs that uniquely support either state A or B are boxe

datasets, or in only one dataset, are shown with magenta and blue lines, respec

See also Figures S3, S4, and S5.
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plies that formation (or dissolution) of SL1 and the ability to

bind to P-TEFb is allosterically coupled to the central domain

structure, explaining why HEXIM1/2-P-TEFb binding induces

structural changes throughout 7SK (Brogie and Price, 2017).

As we discuss further below, the central (RING containing)

domain is one of the primary sites bound by P-TEFb release fac-

tors, consistent with 7SK allostery playing a key role in P-TEFb

regulation.

State H is a heterogenous P-TEFb-released state

State H features SL0, SL1alt, and SL2 stems but is otherwise un-

structured (Figures 3A and S3). The presence of SL1alt implies

that, like state B, state H does not bind P-TEFb. Based on our

analysis of simulated data (Data S1), this state is likely a compos-

ite of diverse, lowly populated protein-bound structures.

Mutational analysis validates the importance of central
core in 7SK structural switching
Our data suggest that 7SK contains an allosteric switch that

couples remodeling of SL1 and the HEXIM1/2-P-TEFb binding

site to the formation of new structures within a central core. We

validated this model using mutational analysis. As an initial

control, we performed DANCE-MaP experiments on in vitro

transcripts of 7SK. This RNA folds into a two-state ensemble

(Figure S6) with A and B states present at 71% ± 4% and

29% ± 4%, respectively (R > 0.95 between reactivity profiles;

n = 3). The most significant differences in the in vitro transcript

compared with cell-free RNA are the further destabilization of

SL0 in state A and the lack of an M state. Because the M state

contains SL0 (Figure S3), the lack of M is also likely attributable

to SL0 destabilization. This SL0 destabilization may reflect

increased electrostatic repulsion from the 50-triphosphate
compared with the endogenous transcript, which contains a

50-g-methyl-triphosphate cap (Jeronimo et al., 2007; Yang

et al., 2019). 7SK may also contain a pseudouridylation modifi-

cation at U250 in the SL3 stem (Zhao et al., 2016), but there

were minimal differences in this region when compared with

cell-free RNA. These data again emphasize that the A and B

states are intrinsic features of the 7SK RNA.

To validate the B state structure, we introduced three (desta-

bilizing) mismatches in SL1 that left the SL1alt pairing intact

(mutant M1; Figures 4A and 4B). DANCE-MaP experiments re-

vealed that M1 exclusively forms B-like states (Figures 4C and

S6B; Table S1). Rescue of the M1 mutation by restoring base

pairing complementarity in SL1 (M1+M2) recovered the native

A:B equilibrium (78% ± 2% and 22% ± 2% populations, respec-

tively; Figures 4C and S6B; Table S1).

We next investigated the role of SL0 in 7SK switching. Our in-

cell data suggest that SL0 forms in both states, although it is
h

Major differences between states A and B are highlighted with gray shading.

(Table S1).

e 7SK. Pearson’s R is shown.

g probabilities (top) and directly measured PAIRs (bottom) are shown as arcs.

r-nucleotide reactivities are colored as per (A). RINGs observed for state B are

d in green and gray, respectively. PAIRs observed in both in-cell and cell-free

tively.
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Figure 4. Mutational analyses validate 7SK states A and B

(A) Mutations shown superimposed on consensus state A and B structural models.

(B) Summary of designed structural impact for each mutant.

(C) Ensemble distribution observed for the native sequence RNA and each mutant, produced as in vitro transcripts. Data represent the mean and SD.

See also Figure S6.
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more stable in state B. Others have proposed that SL0 dynamics

drive SL1:SL1alt switching (Brogie and Price, 2017). Ablation of

SL0 via the M3 mutation had minimal impact on the 7SK

ensemble: 80% ± 3% of the RNA was in an A-like state and

20% ± 3% was in a B-like state that lacks SL0 (Figures 4C and

S6B; Table S1). Mutation of only three of seven base pairs in

SL0 gave similar results (not shown). Thus, SL0 does not drive

the A:B equilibrium.

Finally, we examined the role of SL2ext in A:B switching. We

designed the mutant M4 to disrupt the PAIR-supported three-

helix junction at the base of SL2ext in state B without perturbing

SL1 in state A (Figures 4A and 4B). Strikingly, this mutation fully

shifted the ensemble to A-like states (Figures 4C and S6B; Table

S1). Prior studies have also observed that mutations in the

SL2ext region induce global remodeling of the 7SK structure

(Brogie and Price, 2017; Luo et al., 2021), although the mecha-

nistic basis was not resolved. Thus, even though SL2ext shows

intermediate stability, this region is critical to 7SK A:B switching.

These experiments validate the DANCE-resolved A and B states

and establish that the central core is an energetically accessible

platform for modulating 7SK structure and activity.
The 7SK structural equilibrium depends on cell state
As the 7SK-P-TEFb axis regulates transcription, we hypothe-

sized that the 7SK ensemble may be sensitive to cell growth

and transcriptional load. We used DANCE-MaP to probe the

7SK equilibrium in human RPE-1 cells, an untransformed epithe-

lial cell line that undergoes quiescence upon contact inhibition

(Leontieva et al., 2014). The same 7SK states observed in Jurkat

cells are present in RPE-1 cells (Figures 5A and S7; Table S1),

but in proliferating RPE-1 cells, the populations of states A and

H increase by 25%. This shift in state populations in RPE-1 cells

may reflect differences in growth rate or transcriptional regula-

tion. Significantly, the population of state A, which sequesters

P-TEFb, increased by 15% in quiescent RPE-1 cells relative to

proliferating cells (from 47% ± 2% to 54% ± 1%; Figures 5B

and S7; Table S1). Thus, quiescence, which is marked by

reduced transcription and increased transcriptional pausing

(Core and Adelman, 2019), is associated with a shift in the 7SK

ensemble toward P-TEFb sequestration.

P-TEFb interaction with 7SK is also regulated dynamically in

response to transcriptional stress (Peterlin et al., 2012; Quar-

esma et al., 2016). Flavopiridol is a pan-CDK inhibitor that
Molecular Cell 82, 1708–1723, May 5, 2022 1715
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Figure 5. The 7SK equilibrium is regulated by cell state

(A) 7SK structural ensemble in proliferating RPE-1 cells resolved by DANCE-MaP. Structure models are shown as in Figure 3C. Pearson’s R, comparing RPE-1

and Jurkat in-cell reactivities, are shown.

(B) 7SK ensemble populations for Jurkat cells and proliferating and quiescent RPE-1 cells. Comparisons between individual state populations evaluated using a

two-sidedMann-Whitney U test. Inset, population data shown in complete distribution format. Comparisons between complete ensembles were performed using

a Dirichlet likelihood ratio test (Shaw et al., 2019). n = 10, 7, and 3 for Jurkat, proliferating RPE-1, and quiescent RPE-1 cells, respectively. *, p < 0.05; **, p < 0.01;

***, p < 0.001; ****, p < 0.0001.

(C) Population data in Jurkat and RPE-1 cells treated with vehicle (DMSO, 0.01%) or 1 mM flavopiridol for 1 h. Data represent the mean and SD (n = 2).

See also Figure S7 and Table S1.
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suppresses transcription by inhibiting CDK9 activity (Chao et al.,

2000). To compensate for reduced CDK9 activity, cells release

P-TEFb from 7SK (Biglione et al., 2007), which conventional

probing experiments have indicated results in structural changes

in 7SK RNA (Krueger et al., 2010; Brogie and Price, 2017). We

directly visualized these structural changes by performing

DANCE-MaP experiments in Jurkat and RPE-1 cells after 1 h

treatment with 1 mM (saturating) flavopiridol (Biglione et al.,

2007). Flavopiridol treatment induces dramatic remodeling of

the 7SK structural ensemble in both cell types, with conversion

of state A into states B and H (Figures 5C and S7). These data

establish that the 7SK conformational equilibrium is rapidly re-

modeled, coincident with P-TEFb release.

Stabilization of state B induces transcription in cells
To explore the potential of targeting the 7SK ensemble as a strat-

egy for controlling transcription, we developed an antisense
1716 Molecular Cell 82, 1708–1723, May 5, 2022
oligonucleotide to selectively disrupt state A without impacting

the major helices unique to state B (ASO-B; Figure 6A; see

also Figure S8). ASO-B is backbone and sugar modified and

thus does not mediate RNase H cleavage. Binding of ASO-B

shifted the 7SK structural ensemble to exclusively B-like states,

whereas a control ASO (MM-B) with five central mismatches had

minimal impact (Figures 6B and 6C).

We tested the ability of ASO-B to modulate transcription in

cells by monitoring the induction of HEXIM1 mRNA expression,

which specifically increases upon P-TEFb release from 7SK

and constitutes a well-validated readout of P-TEFb-mediated

transcription activation (He et al., 2006; Castelo-Branco et al.,

2013; Liu et al., 2014; Bugai et al., 2019). As an initial control,

we confirmed using HEK293T cells that HEXIM1 mRNA in-

creases in response to the small molecule JQ1, a bromodomain

inhibitor that induces P-TEFb release via a 7SK-independent

mechanism (Bartholomeeusen et al., 2012; Fujinaga et al.,
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Figure 6. Stabilization of 7SK state B induces transcription

(A) ASO-B binding site shown superimposed on secondary structure models of 7SK states A and B. Mismatched region of the control MM-B oligo shown with

dashed line.

(B) Per-nucleotide reactivities of cell-free 7SK RNA and cell-free RNA incubated with 100 nM MM-B or ASO-B.

(C) DANCE-MaP deconvolution of data from (B) indicates that ASO-B induces conversion of the 7SK ensemble to all B/B-like states.

(D and E) 7SK (top) and HEXIM1mRNA (bottom) levels measured by RT-qPCR from HEK293T cells treated for 24 h with (D) GAP-B or JQ1 or (E) 100 nM ASO-B,

100 nMMM-B, or ASO and JQ1. Data normalized to the control TBPmRNA. Data represent themean and SD. n = 3 for 200 nMGAP-B, n = 9 for 250 nM JQ1, n = 6

for other measurements in (D), and n = 9 for all measurements in (E).

(F) Percent positive cells in HIV latency model 293LatF3 expressing internal GFP, treated for 24 h with 150 nM ASO-B/MM-B, 300 nMGAP-B, or 250 nM JQ1. The

higher ASO-B and GAP-B concentrations give modest improvements in HIV reactivation over 100 nM ASO-B/MM-B and 200 nM GAP-B. The mismatch MM-B

(legend continued on next page)
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2015) (Figure 6D). We validated ASO delivery using a gapmer

ASO (GAP-B) that targets the same region of 7SK as ASO-B to

induce RNase H cleavage (Figure 6D). GAP-B-mediated deple-

tion of 7SK also releases P-TEFb and led to a 1.7-fold to

2.6-fold increase of HEXIM1 mRNA expression. Significantly,

treatment with the structure-shifting ASO-B yielded a 1.7-fold in-

crease in HEXIM1 expression without inducing degradation of

7SK (Figure 6E). Treatment with the mismatched MM-B control

had no impact. We further examined whether ASO-B-mediated

structure switching could complement transcriptional activation

by JQ1. Coaddition of 100 nM JQ1 with ASO-B increased

HEXIM1 expression 3.3-fold, comparable with the upregulation

observed upon treatment with 250 nM JQ1 alone (Figures 6D

and 6E).

In addition to regulating transcription of endogenous genes, P-

TEFb release from 7SK plays a pivotal role in HIV transcription

(Herrmann and Rice, 1995). The virally encoded Tat protein re-

cruits P-TEFb to the HIV promoter to circumvent cellular silencing

mechanisms and drive efficient transcription (Mbonye and Karn,

2017). Compounds that can similarly activate HIV transcription

in latently infected cells would be impactful as part of ‘‘kick-and-

kill’’ cure strategies (Margolis et al., 2016). Latency reversal is typi-

cally studied in Jurkat-derived models, but these cells were not

amenable to ASO transfection. Thus, we generated a HEK293T-

derived cell line with a latent, integrated defective HIV provirus

that expresses Tat and GFP upon reactivation of HIV transcription

(Dobrowolski et al., 2019) (STARMethods). The 293LatF3 reporter

responds to traditional latency reversal agents, as expected (Fig-

ure S8). Treatment of 293LatF3 with ASO-B strongly activates

GFP expression (2-fold relative to MM-B), comparing favorably

to treatment with 250 nM JQ1 (Figure 6F). These data provide

proof of principle for targeting the 7SK structural switch as a HIV

latency reversal strategy. More broadly, the ability of ASO-B to

induce transcription of diverse P-TEFbresponsive genes estab-

lishes a causal relationship between 7SK structural switching, P-

TEFb release, and transcriptional activation.

DISCUSSION

DANCE-MaP enables complete analysis of RNA
structural ensembles
Authoritatively defining RNA structural ensembles in cells and

their responses to cellular stimuli has remained an unmet chal-

lenge. We developed DANCE-MaP, a single-molecule chemical

probing technology that simultaneously measures reactivities at

all four nucleotides, through-space base pairs (PAIRs) and ter-

tiary interactions (RINGs) for coexisting RNA structural states

in cells. DANCE-MaP further measures populations with thermo-

dynamic precision, enabling measurement of ligand-binding af-

finity and of subtle but impactful structural differences between

cell states.

Our studies of the adenine riboswitch and 7SK emphasize the

complexity of RNA structural ensembles. The various states
control induced a 1.4-fold increase in reporter expression relative to no ASO contr

activation pathways (see STAR Methods). Similar results were obtained when me

n = 12 for all except JQ1 (n = 9). Significance was determined using Welch’s t te

See also Figure S8.
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resolved by DANCE-MaP are distinguished by major structural

landmarks but ultimately represent class averages rather than

singular conformations. Within this context of underlying hetero-

geneity, the ability of DANCE-MaP tomeasure base pairing inter-

actions directly and to estimate pairing probabilities within each

state is a crucial advance. Direct PAIR measurements were

essential for resolving the SL2ext structure unique to state B of

7SK. RINGs measured in the compact core of state B further

emphasize that this state has a distinct higher-order structure.

DANCE-MaP resolves otherwise invisible dynamic structures in

cells and enables modeling of global RNA architectures with

confidence.

DANCE-MaP provides many of the same measurements pre-

viously accessible only using the state-of-art NMR experiments,

which have provided the ground-truth references for RNA en-

sembles (Liu et al., 2021). The tertiary RINGs measured in the

ON state of the adenine riboswitch are of sufficient quality to

guide accurate three-dimensional structure modeling (Homan

et al., 2014; Li et al., 2020). The RINGs measured in 7SK state

B are more challenging to interpret due to the residual dynamics

of this state, but such dynamics would similarly challenge any

biophysical technique. DANCE-MaP can be performed on

endogenous RNAs in cells and requires modest experimental

effort, paving the way for a new generation of biophysical studies

in living systems.

Allostery couples 7SK P-TEFb binding domain to distal
release factor binding sites
Regulated release of P-TEFb from the 7SK snRNP is a critical

control point in transcription (Peterlin et al., 2012). We show

that the 7SK RNA intrinsically encodes a large-scale structural

switch that modulates its P-TEFb binding ability, unifying diverse

prior observations of 7SK structure and regulatory function (Fig-

ure 7). Further, we show that the 7SK structural equilibrium is

dynamically controlled in response to transcriptional demands.

Treatment with a CDK9 inhibitor induced rapid (1 h) conversion

of the P-TEFb-bound state A to states B and H, and cellular

quiescencewas associatedwith a shift of the 7SK equilibrium to-

ward state A. These population changes correspond to the

release or sequestration of tens of thousands of P-TEFb mole-

cules per cell (Gurney and Eliceiri, 1980; Wassarman and Steitz,

1991). As the amount of free P-TEFb is roughly equivalent to the

number of engaged RNA Pol II molecules in a cell (Gurney and

Eliceiri, 1980; Kimura et al., 1999; Nguyen et al., 2001; Yang

et al., 2001), these changes in 7SK and P-TEFb availability likely

play a major role in reshaping global transcription.

Numerous proteins have been implicated as ‘‘release factors’’

that stimulate P-TEFb release from 7SK, a group that includes

both helicases and general RNA-binding proteins (Van Herre-

weghe et al., 2007; Ji et al., 2013; Calo et al., 2015; M€uck

et al., 2016; Bugai et al., 2019; Sithole et al., 2020). These pro-

teins bind 7SK hundreds of nucleotides away from the SL1

hairpin binding site of HEXIM1/2 and P-TEFb (Egloff et al.,
ols, which could be due to off-target complementarity betweenMM-B and HIV

asuring expression of a CD8a reporter from the same HIV cassette (Figure S8).

st (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
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2006; Krueger et al., 2008; Martinez-Zapien et al., 2016; Roder

et al., 2020). HEXIM/P-TEFb release coincides with conforma-

tional changes throughout 7SK (Krueger et al., 2010; Brogie

and Price, 2017). Binding of hnRNP proteins, which are potential

effectors of P-TEFb release, also induce distal conformational

changes in 7SK (Luo et al., 2021). However, the relationship be-

tween these conformational changes and P-TEFb release was

unclear. Our data now support a model whereby release factors

catalyze 7SK structural switching and thereby allosterically (via a

topographically distinct site) effect P-TEFb release (Figure 7).

Release factor binding sites directly overlap or are immediately

adjacent to the SL2ext and compact core structures in state B,

positioning them to influence structure switching. Given that un-

structured regions of state H overlap these release factor binding

sites, state H may represent an intermediate along the A-to-B

pathway.

An RNA allostery, distance separated, mechanism of P-TEFb

release offers several key mechanistic advantages: It allows

7SK to maintain a specialized ‘‘release domain’’ that can inte-

grate cellular signals unencumbered by bound P-TEFb. It also

prevents P-TEFb reassociation, once the structural switch is trig-

gered. Less is known regarding how 7SK resequesters P-TEFb.

We posit that helicases stimulate disassociation of hnRNPs and

remodel 7SK to state A (the SL1-containing form), enabling

HEXIM/P-TEFb to bind. Given that 7SK may be involved in tran-

scription termination (Castelo-Branco et al., 2013), this process

may be linked to RNA Pol II recycling. In this hypothetical model,

distinct sets of proteins catalyze 7SK switching between struc-

tural states, allowing sequestering or release of P-TEFb.

The allosteric switching model also rationalizes the extreme

sequence conservation of the first 100 7SK nucleotides across

vertebrates and invertebrates (Yazbeck et al., 2018). This region

must preserve the HEXIM/P-TEFb binding site and the ability to

form the distinct SL1 and SL1alt structures (Figure 7). The core

region is highly conserved among Tetrapoda, supporting its
functional importance, but diverges outside of Tetrapoda,

suggesting that there aremultiple ways to create a P-TEFb-regu-

lating allosteric switch. This pattern of a highly conserved P-

TEFb aptamer and variable core is also observed in ribos-

witches, where conserved aptamer domains are often integrated

with diverse expression domain architectures (Roth and

Breaker, 2009).

7SK structural switch links P-TEFb release to
protranscription functions
7SK is canonically considered a transcriptional repressor due to

its P-TEFb sequestering function. However, the 7SK snRNP also

has protranscription functions, including blocking convergent

transcription via association with the BAF complex (Flynn

et al., 2016) and facilitating spliceosome production (Egloff

et al., 2017; Ji et al., 2021). These protranscription functions

are specific to 7SK snRNPs not bound to P-TEFb. Based on

our switching model, chemical probing data obtained on BAF-

associated 7SK complexes (Flynn et al., 2016) can now be inter-

preted as corresponding to state B or H.We hypothesize that the

7SK structural switch integrates P-TEFb release with conversion

of 7SK into a protranscription snRNP that scaffolds assembly of

elongation-supporting factors (Figure 7, right). This model pro-

vides a mechanism for spatial and temporal coupling between

RNA Pol II pause release and BAF-mediated inhibition of conver-

gent transcription (Flynn et al., 2016). Our dual-function switch-

ing model also rationalizes observations that 7SK is not essential

for basal P-TEFb regulation (Studniarek et al., 2021) but that 7SK

depletion perturbs global chromatin structure (Prasanth et al.,

2010) and compromises stress-induced transcriptional reprog-

ramming (Studniarek et al., 2021). Most broadly, our model em-

phasizes how structural switching enables the 7SK snRNP to

integrate diverse signals to cooperatively inactivate or activate

transcription in response to cellular demand (Figure 7). RNAs

are unique among biomolecules in their ability to encode large
Molecular Cell 82, 1708–1723, May 5, 2022 1719
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but precise changes in structure (Breaker, 2012; Dethoff et al.,

2012), making RNAs optimally suited to serve as molecular inte-

grators. We speculate that similar switching mechanisms under-

lie regulatory functions of many noncoding RNAs.

7SK switch constitutes a therapeutic target for
modulating transcription
Using an ASO that stabilizes state B, we showed that exoge-

nously triggered switching of 7SK structure induces transcription

of P-TEFb-sensitive targets. Development of compounds that

induce P-TEFb release and activate transcription of latent HIV

provirus represents a component of strategies to eradicate

persistent HIV infection (Cary et al., 2016; Margolis et al.,

2020). Our data thus provide proof of principle for the 7SK struc-

tural switch as a target for kick-and-kill therapies. Conversely,

there is intense interest in developing pharmacological inhibitors

of P-TEFb as a cancer therapeutic (Yang et al., 2020). Disruption

of the 7SK/P-TEFb regulatory axis has been linked to tumorigen-

esis and cancer progression (Cheng et al., 2012; Ji et al., 2014;

Tan et al., 2016). Intriguingly, we observed differences in the

7SK equilibrium between Jurkat (a leukemia line) and RPE-1

(an untransformed epithelial line) cells, suggesting that dysregu-

lation of the 7SK structural equilibrium supports altered

transcription in cancer cells. Small molecules or ASOs that

reduce the cellular availability of P-TEFb by selectively stabilizing

7SK state A have potential for blocking transcription in can-

cer cells.

Limitations of the study
The DANCE-MaP technology has several limitations. Although

this and other studies (Homan et al., 2014; Mustoe et al., 2019;

Tomezsko et al., 2020; Luo et al., 2021; Morandi et al., 2021) indi-

cate that multiple-hit DMS modification experiments accurately

report native RNA structure, accumulated chemical damage

may alter behavior of some RNAs. DANCE-MaP has a time res-

olution of �5 min using DMS, but �10-second resolution is

possible with newer reagents (Ehrhardt and Weeks, 2020).

DANCE-MaP can only resolve structural changes that involve

>20 nucleotides with populations of at least �5% and currently

has a length limit of �600 nucleotides across a single MaP-RT

sequencing read. Reliable measurement of base pairing PAIR

and tertiary RING interactions in DANCE-deconvoluted datasets

ideally requires >1 million sequencing reads, making it cost pro-

hibitive to apply on transcriptome-wide scales. DANCE-MaP re-

quires that each sequenced DNA corresponds to a unique RNA

molecule and will be more challenging to implement for low-

abundance RNAs.

Our discovery of the 7SK structural equilibrium raises

intriguing questions for future investigation. Our data indicate

that each of the three 7SK states have residual heterogeneity;

resolving this heterogeneity will be essential for fully understand-

ing 7SK mechanisms and for therapeutic targeting efforts. Our

experiments clearly indicate that state A can be converted to

states B and H, but whether B can be converted to A is uncertain.

Whether state H is an on-pathway intermediate between A and

B, or serves some other function, is also unknown. Although

we show that stabilizing state B via ASO-B induces transcription

of P-TEFb-sensitive genes, further experiments are needed to
1720 Molecular Cell 82, 1708–1723, May 5, 2022
confirm the ASO-B mechanism of action. We observed clear dif-

ferences in the 7SK equilibrium between Jurkat and RPE-1 cells,

but further experiments are needed to distinguish whether this

observation reflects cell-type variation in 7SK regulation or dif-

ferences in growth state. More broadly, delineating the pathways

and factors that maintain and remodel the 7SK equilibrium rep-

resents a critical goal for future research.
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Zhang, J., and Ferré-D’Amaré, A.R. (2014). Dramatic improvement of crystals

of large RNAs by cation replacement and dehydration. Structure 22,

1363–1371.

Zhao, Y., Karijolich, J., Glaunsinger, B., and Zhou, Q. (2016). Pseudouridylation

of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcrip-

tion and escape from latency. EMBO Rep. 17, 1441–1451.
Molecular Cell 82, 1708–1723, May 5, 2022 1723

http://refhub.elsevier.com/S1097-2765(22)00114-9/sref75
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref75
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref75
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref76
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref76
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref77
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref77
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref77
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref77
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref78
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref79
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref79
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref79
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref79
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref80
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref80
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref80
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref81
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref81
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref82
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref82
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref83
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref83
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref83
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref83
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref83
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref84
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref84
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref84
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref85
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref85
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref85
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref85
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref86
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref86
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref86
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref87
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref87
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref87
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref87
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref88
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref88
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref88
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref89
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref89
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref89
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref90
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref90
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref90
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref90
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref90
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref91
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref91
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref91
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref92
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref92
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref93
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref93
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref94
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref94
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref94
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref94
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref95
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref95
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref95
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref95
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref96
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref96
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref97
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref97
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref98
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref98
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref98
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref99
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref99
http://refhub.elsevier.com/S1097-2765(22)00114-9/sref99


ll
Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

RPMI 1640 Gibco Cat# 21875034

Fetal Bovine Serum (FBS; used for Jurkat

and HEK293T cells)

Millipore Cat# TMS-013-B

DMEM/F-12+HEPES Gibco Cat# 12430112

Pen/Strep Gibco Cat# 15140122

Sodium pyruvate Gibco Cat# 11360070

Fetal Bovine Serum (FBS; used for RPE-

1 cells)

Gibco Cat# 10437036

MEM non-essential amino acids Gibco Cat# 11140050

T7 polymerase K. Weeks Lab N/A

TURBO DNase Invitrogen Cat# AM2238

TRIzol reagent Invitrogen Cat# 15596018

Bicine Sigma-Aldrich Cat# B3876

Superscript II Reverse transcriptase Invitrogen Cat# 18064014

Dimethyl sulfate (DMS) Thermo Scientific Cat# 430831000

2-mercaptoethanol (BME) Sigma-Aldrich Cat# M6250

Q5 HotStart polymerase NEB Cat# M0493L

RNasin Promega Cat# N2511

Yeast inorganic pyrophospatase NEB Cat# M2403L

Flavopiridol Selleckchem Cat# L86-8275

JQ1 MedChemExpress Cat# HY-13030

HMBA Sigma Cat# H4663

TNFa R&D Systems Cat# 210-TA-100

TransIT-oligo Mirus Bio Cat# MIR 2164

anti-CD8a-PacBlue, clone 53-6.7 BioLegend Cat# 100725 (RRID:AB_493425)

Kapa Hot Start HiFi Polymerase Roche Cat# 7958935001

Paraformaldehyde Electron Microscopy Sciences Cat# 15710

5-ethynyl-20-deoxyuridine (EdU) Millipore-Sigma Cat# 900584

5-FAM azide LumiProbe Cat# C4130

DAPI Millipore-Sigma Cat# MBD0015

Critical commercial assays

PureLink PCR column Invitrogen Cat# K310001

Qubit RNA BR assay Invitrogen Cat# Q10210

Agencourt RNAclean XP beads Beckman Coulter Cat# A63987

RNeasy mini Qiagen Cat# 74004

MagBind TotalPure NGS beads Omega BioTek Cat# M1378-01

Bioanalyzer (HS DNA) Agilent Cat# 5067-4626

G-50 Sephadex Cytiva Cat# 27534001

Illumina MiSeq v2 chemistry (300-cycle) Illumina Cat# MS-102-2002

Illumina MiSeq v2 chemistry (500-cycle) Illumina Cat# MS-102-2003

Illumina MiSeq v3 chemistry (600-cycle) Illumina Cat# MS-102-3003

Quick-RNA 96-well Zymo Cat# R1052

Maxima First Strand cDNA Synthesis kit for

RT-qPCR

ThermoFisher Cat# K1641

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

FastStart Universal SYBR Green Master Roche Cat# 4913850001

PrestoBlue Life Technologies Cat# A13261

Mission Lentiviral Packaging Mix Millipore-Sigma Cat# SHP001

EasySep Mouse CD8a Positive

Selection Kit

StemCell Technologies Cat# 18953

Deposited data

Adenine riboswitch DMS-MaP data This study GSE182552

7SK DMS-MaP data This study http://www.ncbi.nlm.nih.gov/bioproject/

741330

Experimental models: Cell lines

Human: Jurkat E6-1 (blood T-lymphoblast) ATCC TIB-152

Human: hTERT RPE-1 (retina epithelial) Gift from W. Marzluff CRL-4000

Human: HEK293T/17 (kidney epithelial) ATCC CRL-11268

Human: 293LatF3 This study N/A

Oligonucleotides

primers Table S2 N/A

g-block templates Table S2 N/A

Antisense oligonucleotides Table S2 N/A

Recombinant DNA

pHR-H13LTat-CD8a/d2eGFP-IRES-Nef Dobrowolski et al. (2019); Addgene Plasmid # 126552

Software and algorithms

Prism 9 Gaphpad Software https://www.graphpad.com/scrientific-

sofware/prism/

ShapeMapper (v2.1.5) Busan and Weeks (2018) https://weekslab.com/software/

DanceMapper (v1.0) This study https://github.com/MustoeLab/

DanceMapper

https://doi.org/10.5281/zenodo.5847984

RingMapper (v1.1) Mustoe et al. (2019) https://github.com/Weeks-UNC/

RingMapper

arcPlot https://github.com/Weeks-UNC/arcPlot

RNAstructure (v6.2) Reuter and Mathews (2010) https://rna.urmc.rochester.edu/

RNAstructure.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents may be directed to and will be fulfilled by the lead contact, KevinWeeks

(weeks@unc.edu).

Materials availability
Commercially available reagents are listed in the key resources table. 293LatF3 cells are available from the lead contact and A.W.T.

upon reasonable request.

Data and code availability
d Adenine riboswitch probing data have been deposited at the GEO (GSE182552), and 7SK probing data have been deposited at

the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/bioproject/741330).

d The DanceMapper pipeline, along with scripts for performing structure modeling and visualizing DANCE solutions, is available

at https://github.com/MustoeLab/DanceMapper and has also been deposited at Zenodo (DOI listed in key resources table).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
Molecular Cell 82, 1708–1723.e1–e10, May 5, 2022 e2

mailto:weeks@unc.edu
http://www.ncbi.nlm.nih.gov/bioproject/741330
https://github.com/MustoeLab/DanceMapper
http://www.ncbi.nlm.nih.gov/bioproject/741330
http://www.ncbi.nlm.nih.gov/bioproject/741330
https://www.graphpad.com/scrientific-sofware/prism/
https://www.graphpad.com/scrientific-sofware/prism/
https://weekslab.com/software/
https://github.com/MustoeLab/DanceMapper
https://github.com/MustoeLab/DanceMapper
https://doi.org/10.5281/zenodo.5847984
https://github.com/Weeks-UNC/RingMapper
https://github.com/Weeks-UNC/RingMapper
https://github.com/Weeks-UNC/arcPlot
https://rna.urmc.rochester.edu/RNAstructure.html
https://rna.urmc.rochester.edu/RNAstructure.html


ll
Article
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Jurkat E6-1 cells were obtained from ATCC (TIB-152) and cultured in suspension using RMPI 1640media (Gibco) supplemented with

10% FBS (Millipore), 100 U/mL Pen/Strep (Gibco) at 37 �C and 5% CO2. hTERT RPE-1 (RPE-1) cells were a gift from W. Marzluff

(UNC) andwere authenticated by STR profiling and confirmed to be free of mycoplasma contamination. RPE-1 cells weremaintained

in DMEM/F-12 + HEPES (Gibco) with 10% FBS (Gibco), 100 U/mL Pen/Strep (Gibco), 2 mM sodium pyruvate (Gibco), andMEM non-

essential amino acids (Gibco) at 37 �C and 5% CO2. HEK293T/17 cells were obtained from ATCC (CRL-11268) and maintained in

DMEM (Gibco) supplemented with 10% FBS (Millipore) and 100 U/mL Pen/Strep at 37 �C and 5% CO2.

Generation of 293Lat cell line
The pHR-H13LTat-CD8a/d2eGFP-IRES-Nef plasmid encoding a replication incompetent HIV and a polycistronic transcript express-

ing mouse CD8a, GFP, and Nef was obtained as a gift from Jonathan Karn (Addgene plasmid #126552). The plasmid wasmodified to

add a T2A motif to decouple CD8a and GFP expression using incomplete primer extension (primers listed in Table S2; Integrated

DNA technologies) and Kapa Hot Start HiFi Polymerase (Roche), generating pHR-H13LTat-CD8a-T2A-d2eGFP-IRES-Nef. Success-

ful addition of the T2A was confirmed by sanger sequencing (GeneWiz). Lentiviral particles containing pHR-H13LTat-CD8a-T2A-

d2eGFP-IRES-Nef were generated using the Mission Lentiviral Packaging Mix (Millipore-Sigma) and HEK293T/17 cells were trans-

duced at an MOI of 0.1. After 3 days, cells positive for mouse CD8a were isolated using the EasySepMouse CD8a Positive Selection

Kit (StemCell Technologies). Isolated cells were subject to limiting dilution to generate monoclonal lines. Successful monoclonal lines

were screened for low basal GFP expression and ability to be reactivated by TNFa by flow cytometry. Clone 293LatF3 was expanded

and tested based on these criteria.

METHOD DETAILS

DMS probing of the adenine riboswitch RNA
Native sequence and mutant Vibrio vulnificus add adenine riboswitches containing 5’ and 3’ structure cassettes were transcribed

in vitro as described (Mustoe et al., 2019). Briefly, templates were synthesized as gBlocks [IDT; (Mustoe et al., 2019) and Table

S2], amplified by PCR (Q5 DNA polymerase, NEB), and purified (PureLink PCR column, Invitrogen). RNA was transcribed in vitro

[400 mL; 40 mM Tris (pH 8.0), 25 mM MgCl2, 2.5 mM Spermidine, 0.01% (vol/vol) Triton X-100, 10 mM DTT, 5 mM each NTP,

�4 mg DNA template, 0.05 mg/mL T7 RNA polymerase (lab made), 0.2 U pyrophosphatase (NEB); 37 �C; 4h], treated with DNase

(TURBO DNase, Invitrogen), purified (Agencourt RNAclean XP beads; Beckman Coulter), and stored at -20 �C. RNA size and purity

was confirmed using Bioanalyzer analysis (Agilent) and concentration was quantified (Qubit RNA BR assay, Invitrogen).

For probing experiments, RNA [4 pmol in 2 mL volume] was denatured at 95 �C for 2 min followed by snap cooling on ice for 2 min.

RNA was folded by adding 7 uL of 1.433 adenine-containing folding buffer [13 buffer: 300 mM bicine (pH 8.0), 100 mM NaCl, 5 mM

MgCl2, variable adenine] and incubated at 30 �C for 30min. FoldedRNAwas added to 1 mL of DMS solution (1.7M in ethanol), allowed

to react for 10min at 30 �C, and then quenched via addition of an equal volume of 20%2-mercaptoethanol (vol/vol in H2O) and placed

on ice. RNAwas purified by precipitation with ethanol. No-reagent control RNAwas prepared identically, substituting neat ethanol for

the DMS solution.

DMS probing of 7SK RNA in cells
For Jurkat cells, cells were pelleted, washed with PBS, and counted. 1-23106 cells were resuspended in 450 mL fresh media sup-

plemented with 200 mM Bicine (pH 8.0). Cells were then treated with 50 mL of 1.7 M DMS in ethanol or 50 mL ethanol for 6 min at

37 �C. Reactions were quenched with 500 mL 20% 2-mercaptoethanol and placed on ice. Cells were pelleted and RNA extracted

using 1 mL TRIzol reagent (Invitrogen). Residual DNA was removed by treating with 2 units of TURBO DNase (Ambion) for 30 min

at 37 �C, followed by spike-in of 2 additional units and further 30 min incubation (1 hour total). RNA was purified by SPRI beads

(MagBind TotalPure NGS beads; Omega BioTek) and quantified by UV absorbance (Nanodrop).

For RPE-1 cells, 1.53106 cells were seeded into a 10 cm dish 48 h prior to probing. Media was removed and 5.4 mL fresh media,

supplemented with 200mMBicine (pH 8.0), was added and incubated at 37 �C for 3min. Cells were treated with 600 mL of 1.7MDMS

or neat ethanol for 6 min at 37 �C, followed by quenching using 6 mL of 20% 2-mercaptoethanol on ice. Cells were scraped and pel-

leted, RNA was extracted using TRIzol (as described for Jurkat cells) or column (RNeasy mini; Qiagen), and quantified by UV absor-

bance (Nanodrop).

DMS probing of cell-free 7SK RNA
Total RNA was extracted from 23106 Jurkat cells using TRIzol reagent (Invitrogen). RNA was DNase treated, purified (Mag-Bind To-

talPure NGS beads; 1.83 ratio), and quantified as described above for in-cell RNA. 2 mg RNA in 50 mL in water was denatured at 98 �C
for 1min, snap cooled at 4 �C for 1min, and then refolded via addition of 50 mL of 23Bicine RNA folding buffer and incubation at 37 �C
for 20minutes [13 folding buffer: 200mMBicine (pH 8.0), 200mMpotassium acetate (pH 8.0) and 5mMMgCl2] (Mustoe et al., 2019).

Samples were split into two 45 mL aliquots and treated with either 5 mL 1.7 M DMS in ethanol or 5 mL neat ethanol at 37 �C for 6
e3 Molecular Cell 82, 1708–1723.e1–e10, May 5, 2022



ll
Article
minutes. Following treatment, samples were quenched with 1 volume of 20% 2-mercaptoethanol, placed on ice, and purified by iso-

propanol precipitation.

DMS probing of in vitro transcribed 7SK RNA
DNA templates were synthesized as gBlocks (Integrated DNA technologies; Table S2) and amplified by PCR [Q5 HotStart polymer-

ase (NEB), supplemented with 1.0 M betaine]. DNA templates were purified (Mag-Bind TotalPure NGS beads; 0.73 ratio). RNA was

transcribed in vitro [400 mL; 40 mM Tris (pH 8.0), 25 mMMgCl2, 2.5 mM spermidine, 0.01% (vol/vol) Triton X-100, 10 mM DTT, 5 mM

each NTP, 200 ng DNA template, 95 mg T7 RNA polymerase (lab made), 20 U RNasin (Promega), 50 U yeast inorganic pyrophospha-

tase (NEB); 37 �C; 4h]. Transcription reactions were treated with 16 U TURBO DNase (Thermo) for 30 min at 37 �C and purified (Mag-

Bind TotalPure NGS beads; 1.83 bead:volume ratio) and stored at -20 �C. RNA size and purity were confirmed using Bioanalyzer

analysis (Agilent) and concentration was quantified (Qubit RNA BR assay, Invitrogen).

For probing experiments, RNA [10 mg in 50 mL] was denatured at 95 �C for 2 min followed by snap cooling on ice for 2 min. 50 uL of

23 folding buffer was then added and the RNA folded at 37 �C for 30 min [13 buffer: 200 mM Bicine (pH 8.0), 200 mM potassium

acetate (pH 8.0) and 5 mM MgCl2]. 45 mL of folded RNA was added to 5 mL of DMS solution (1.7 M in ethanol), allowed to react

for 6 min at 37 �C, quenched via addition of an equal volume of 20% 2-mercaptoethanol, and placed on ice. RNA was purified by

precipitation with isopropanol. No-reagent control RNA was prepared identically, substituting neat ethanol for the DMS solution.

DMS probing of contact-inhibited cells
RPE-1 cells were growth-arrested by contact inhibition as described (Matson et al., 2019). For each replicate experiment, three 10 cm

disheswere seededwith 63 106 RPE-1 cells and grown to 100%confluency. Mediumwas then exchanged and cells were incubated

for an additional 96 h to allow for complete growth arrest. Two dishes of arrested cells were modified with DMS or ethanol as

described for proliferating RPE-1 cells. The third dish was used to confirm growth arrest by flow cytometry analysis. Cells were incu-

bated with 10 mM 5-ethynyl-20-deoxyuridine (EdU) for 1 h prior to harvesting. Cells were then harvested with trypsin and fixed in 4%

formaldehyde. Cells were labeled with FAM-azide and nuclei were stained with DAPI. Less than 1% of cells were in S phase (positive

for FAM), and 90% of cells were in G1/G0 (2n DNA content measured by DAPI).

DMS probing of flavopiridol treated cells
Jurkat cells (3 million cells in 10mL freshmedia) were seeded 23 h prior to treatment and were then treated with either vehicle (0.01%

DMSO) or with 1 mM flavopiridol (in DMSO) for 1 h. RPE-1 cells were seeded 23 h prior to be 70% confluent on the day of experiment

and were treated with 0.01%DMSO or 1 mM flavopiridol for 1 h. Cells were then treated with DMS and RNA was extracted identically

as described above for in-cell probing experiments.

MaP reverse transcription
Mutational profiling (MaP) reverse transcription (RT) was performed as described (Mustoe et al., 2019; Sengupta et al., 2019). For

adenine riboswitch experiments, one-half of the purified DMS reaction was input into RT. For in-cell and cell-free 7SK experiments,

1 mg total cellular RNA was input into RT. For in vitro 7SK experiments, 100 ng RNA was input into RT. RT products were purified by

beads (Mag-Bind TotalPure NGS beads; 1.83 ratio) or column (G-50 Sephadex; Cytiva).

Sequencing library construction
Sequencing libraries were generated using the two-step PCR approach (Smola et al., 2015a).

For the adenine riboswitch, one-seventeenth of the purified RT reaction was input to PCR1, performed [98 �C for 30 s, 10 cycles of

(98 �C for 8 s, 66 �C for 20 s, 72 �C for 20 s), and 72 �C for 2 min]. PCR1 product was purified (Mag-Bind TotalPure NGS beads; 0.83

ratio). 2.5 ng product was input to PCR2 [98 �C for 30 s, 10 cycles of (98 �C for 8 s, 68 �C for 20 s, 72 �C for 20 s), and 72 �C for 2 min].

PCR2 product was purified (Mag-Bind TotalPure NGS beads; 0.83 ratio), and sequenced with an Illumina MiSeq instrument using

23150 paired-end sequencing (v2 chemistry). Data used for high-depth PAIR-MaP/RING-MaP analysis in Figures 2 and S2 were ob-

tained by resequencing libraries from a previously published experiment (Mustoe et al., 2019).

For 7SK, one-fifth of the purified RT reaction was input to PCR1 [98 �C for 30 s, 10 cycles of (98 �C for 10 s, 68 �C for 20 s, 72 �C for

20 s), and 72 �C for 2 min]. PCR1 product was purified (Mag-Bind TotalPure NGS beads; 0.83 ratio). 1-2 ng product was input to

PCR2 [98 �C for 30 s, 10-14 cycles of (98 �C for 10 s, 65 �C for 30 s, 72 �C for 20 s), and 72 �C for 2 min]. PCR2 product was purified

(Mag-Bind TotalPure NGS beads; 0.83 ratio) and sequencedwith an IlluminaMiSeq instrument using 23250 (v2 chemistry) or 23300

(v3 chemistry) paired-end sequencing.

ASO experiments
The ASO-B antisense oligonucleotide was designed to bind to nucleotides 64-82 of 7SK to stabilize state B and contained complete

2ʹ-O-methyl modifications to render it insensitive to RNase H. The mismatch MM-B ASO contains 5 central mismatches to reduce

binding affinity. The positive control gapmer ASO (GAP-B) targets the 64-78 region but lacks central 2ʹ-O-methylation and hence

targets 7SK for RNase H degradation. ASOs were synthesized (IDT) with phosphorothioate backbones for added stability in cells

(Table S2).
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ASO-B and other ASO designs targeting the same general region (complementary to nucleotides 49-64, 52-67, 59-71, 73-83,

78-89, 80-95, 84-93, and 85-96; see Figure S8A) were evaluated for their ability to engage with 7SK and stabilize state B using

DANCE-MaP experiments. 4 mg total RNA from Jurkat cells in 100 mL H2O was denatured at 98 �C for 1 min, snap cooled on

4 �C for 1 min, and then folded via addition of 100 mL of 23 folding buffer [13: 200 mM Bicine (pH 8.0), 200 mM potassium acetate

(pH 8.0) and 5 mM MgCl2] and incubated at 37 �C for 15 min. 99 mL folded RNA was then added to 1 mL of 100 mM ASO and

incubated for an additional 15 min at 37 �C. Samples were then split in to two 45 mL samples and treated with DMS or ethanol

as described for cell-free experiments. ASO-B was identified as the design that most efficiently stabilized state B without

disrupting global structure.

HEK293T cells were seeded at 25,000 cells/well in a 96-well flat bottom plate 18 h prior to transfection. 100 nM of an ASO or

gapmer were transfected using TransIT-Oligo (Mirus Bio). For JQ1 combination experiments, 100 nM JQ1 was added 4 h post trans-

fection for a total incubation time of 20 h. 250 nM JQ1 was added for 24 h. After 24 h, cells were lysed in lysis buffer (Quick RNA 96-

well RNA kit; Zymo) and RNA was either immediately isolated or lysed samples were flash frozen and stored at -80 �C for no longer

than 48 h prior to RNA isolation.

Gene expression analysis
Total RNAwas isolated (Quick RNA 96-well; Zymo) and cDNAwas generated (Maxima First Strand cDNA Synthesis Kit for RT-qPCR;

with dsDNase, Thermo Fisher). Gene expression was assayed by RT-qPCR (using FastStart Universal SYBR Green Master; Roche)

on an QuantStudio 5 instrument (Applied Biosystems). Primer sets are listed in Table S2. Primer efficiency for all targets was quan-

tified for each run using a standard curve derived from a DNA gene fragment (gBlock; Integrated DNA Technologies; Table S2) de-

signed to mimic the target amplicon.

HIV latency reversal experiments
293LatF3 cells were plated at 25,000 cells/well in a 96-well flat bottom plate 18 h prior to drug/ASO treatment. Response to canonical

latency reversal agents was assessed by treating cells with JQ1, TNFa, or HMBA (DMSO stock solutions, max final DMSO concen-

tration of 0.1%). Transfections of ASO-B, MM-B, and GAP-B ASOs were performed using TransIT-Oligo Reagent (Mirus Bio). 24 h

after drug/ASO treatment, cells were treatedwith PrestoBlue (Life Technologies) for 30min and fluorescencemeasured (555 nmexci-

tation, 585 nm emission, 570 nm cutoff; SpectraMax M3, Molecular Devices). PrestoBlue was removed, cells washed, stained with

anti-CD8a-PacBlue (Biolegend), and fixed in 1.5% paraformaldehyde (Electron Microscopy Sciences). GFP and cell surface CD8a

levels were assayed using the iQue Screener Plus (Intellicyt) and data processed using ForeCyt analysis software (Intellicyt). Similar

results were observed for replicate experiments performed on a second 293Lat clone (not shown).

MM-B demonstrated a minor 1.4-fold increase in GFP expression (Figure 6F) but failed to induce HEXIM1 mRNA expression

(Figure 6E), suggesting a potential off-target hit. NCBI BLAST of MM-B against the human G+T database identified 89% query

coverage (nt 2-18 complementary with 1 mismatch) to the TAF10 mRNA, a TATA-binding protein associated factor that mod-

ulates activity of transcription factor IID (TFIID). TFIID is known to be recruited by Tat (Kashanchi et al., 1994; Raha et al., 2005)

and thus potential off-target impacts of MM-B in this pathway could result in HIV activation but would be unlikely to activate

HEXIM1.

QUANTIFICATION AND STATISTICAL ANALYSIS

DANCE-MaP algorithm
Data pre-processing

Aligned DMS-MaP sequencing reads are processed into two binary vectors. The mutation string, xn = ðxn;1;.; xn;DÞ, encodes
whether a match (0) or a mutation (1) is observed at each nucleotide, where n indexes an individual read and D is the length of

the amplicon. The data string, dn = ðdn;1;.; dn;DÞ; encodes whether the nucleotide wasmeasured (1) or not (0); example ‘‘nomeasure-

ment’’ scenarios include low quality score, a deletion, or masking due to minimum spacing requirements between mutations (Busan

and Weeks, 2018). Reads with fewer than 75% of positions defined,
PD

i dn;i < 0:75,D, are discarded. Positions with mutation rates

>0.02 in the ethanol-treated control sample ðretoh;iÞ, or with average mutation rates less than 0.0001 in the DMS-treated sample

ðrDMS;iÞ, are considered invalid and excluded from further analysis (dn;i = 0 for all n).

To prevent individual nucleotides from dominating the maximum likelihood (ML) clustering outcome and to improve clustering po-

wer, nucleotide positions are split into ‘‘active’’ and ‘‘inactive’’ categories. Active nucleotides are included in likelihood calculations

during primary ML clustering, whereas inactive nucleotides are excluded and solved via a second constrained ML-optimization (Fig-

ure S1). Active versus inactive status is specified using the binary vector f = ðf1;.;fDÞ, where fi = 1 denotes active status. Nucle-

otides where ðrDMS;i � retoh;iÞ < 0.002 are set to inactive upon model initialization. As described below, additional nucleotides may be

inactivated over the course of model solution.

Primary ML clustering

Data are fit to a Bernoulli mixture model using the expectation-maximization (EM) algorithm (Bishop, 2006). Fitting is performed

for sequentially larger numbers of model components (structural states), beginning with 1, until the best fit is identified

(Figure S1).
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A model consisting of K components is specified by two parameter vectors:

the populations of each state; p= ðp1;.pKÞ;
X

pk = 1
and the mutation rates of each state; m=

0@m1;1;.m1;D

«
mK;1;.mK;D

1A
The fitting process begins with random initialization of m (drawn from {Beta(1,40)+0.001}) and p = ð1 =K;.1 =KÞ. Solutions for

fp;mg are then obtained via EM iteration. The appropriate equations for EM iteration incorporating missing data and active/inactive

positions are:

zn;k =
pk

QD
i =1

h
m
xn;i
k;i

�
1� mk;i

�1�xn;i
ifi dn;i

PK
m= 1pm

QD
i = 1

h
m
xn;i
m;i

�
1� mm;i

�1�xn;i
ifi dn;i

(Equation 1)
mk;i =

PN
n= 1zn;k dn;i xn;i +ai � 1PN
n= 1zn;k dn;i +ai + bi � 2

for i ˛ factiveg (Equation 2.1)
pk =

PN
n= 1zn;k
N

(Equation 2.2)

N is the total number of reads being clustered. ai and bi are parameters for a nucleotide-specific beta prior, which are set to:

ai = 1+ 0:01,retoh;i,
XN

n=1
dn;i;bi = 2

This prior encourages convergence to solutions with mk;iRretoh;i (preventing convergence to non-physical solutions where mk;i/ 0),

and contributes approximately 1/100 the weight relative to the input data in determining the final value of mk;i.

Equations 1, 2.1, and 2.2 are iterated until convergence, defined as maxð��mðt +1Þ �mðtÞ��Þ < 10�4 and maxð��pðt + 1Þ � pðtÞ��Þ < 10�4,

where fpðt + 1Þ;mðt +1Þg denotes the parameters at iteration t+1. Converged solutions are assessed for validity as defined below. If

an invalid solution is obtained repeatedly, then the nucleotides causing the invalid failure are inactivated ðfi = 0Þ.
EM fitting is repeated from different random initializations until 3 identical converged solutions are found, up to a maximum of 50

attempts. Identical solutions are defined as maxð��pa �pb
��Þ < 0:03 and maxð��ma � mb

��Þ < 0:01, where a and b denote two different

valid K-component solutions. If 3 solutions are not identified, then themodel search terminates, selecting the K-1model. If 3 identical

solutions are identified, then the Bayesian information criteria (BIC) is used to evaluate whether the K-component model is signifi-

cantly better than the K-1 model. Specifically, we compute:

DBIC = ðqK �qK�1ÞlnðNÞ � 2 lnðLK =LK�1Þ
where qK andLK denote the number of parameters and the likelihood of the K-component model, respectively. If DBIC % � 46, indi-

cating �1010 greater evidence for the K versus K-1model, then the K-component model is accepted, K is incremented, and the EM

fitting process repeats to a default maximum of K=5. Otherwise, the K-1model is selected and the search terminates. We denote the

final selected parameters as fbp; bmg.
Note that final fitted parameters can occasionally exhibit small run-to-run variation, caused by different sets of nucleotides being

inactivated during each stochastic fitting trajectory. When observed, this variation is within the expected precision of the overall

experiment: bp correlate with R>0.995, and bm ± 3%.

Model validity criteria

Initial testing revealed that the EMalgorithm occasionally converged to non-physical or degenerate solutions, particularly for K>2.We

thus we perform several tests to ensure model validity; solutions that fail any of these validity criteria are rejected.

First, we require that fp;mg fall within the physical boundaries:

minðpÞ R 0:001
minðmÞR 10�5
maxðmÞ% minð0:5;3 ,maxðrDMSÞÞ
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mk;i

�
ml;i % 200 for i ˛ factiveg; k; l ˛ f1;.Kg; ksl

Second, to prevent selection of degenerate models, we require the root mean square (RMS) difference between reactivity profiles

be R 0.005, excluding the top percentile of m differences:

RMSk;l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ml;i � mk;i

�2
i ˛ factiveg;ðml;i�mk;iÞ2 % P99

r
R 0:005 for all k; l ˛ f1;.Kg; ksl

where P99 denotes the 99th percentile of ðml;i � mk;iÞ2 values.

Third, because the minimum spacing required between mutations can favor artifactual solutions featuring anticorrelated m param-

eters over short-length scales, we discriminate against such solutions by computing the scores

s1;i =
X2

m=0

fi +m log

�
mk;i +m

ml;i +m

�
+
X7

m= 3

fi +m log

�
1� mk;i +m

1� ml;i +m

�
+
X10
m= 8

fi +m log

�
mk;i +m

ml;i +m

�

s2;i =
X2

m= 0

fi +m log

�
1� ml;i +m

1� mk;i +m

�
+
X7

m= 3

fi +m log

�
ml;i +m

mk;i +m

�
+
X10
m= 8

fi +m log

�
1� mk;i +m

1� ml;i +m

�
for all positions i. Solutions are rejected if

��s1;i�� > 4:6 and
��s2;i�� > 4:6 for any i, equivalent to a >100-fold anticorrelated likelihood dif-

ference over a 10-nt window.

Finally, to prevent selection of poorly definedmodels, we require that the informationmatrix for fp;mg be invertible. The information

matrix is computed from the observed data as described (McLachlan and Peel, 2000).

Solving for inactive positions

Following identification of a valid converged solution, mk;i parameters of inactive nucleotides are obtained via constrained EM fitting.

pk and active mk;i are held fixed while iterating the equations

z0n;k =
pk

QD
i = 1

h
m
xn;i
k;i

�
1� mk;i

�1�xn;i
i dn;i

PK
m= 1pm

QD
i =1

h
m
xn;i
m;i

�
1� mm;i

�1�xn;i
i dn;i
mk;i =

PN
n= 1z

0
n;k dn;i xn;i +ai � 1PN

n= 1z
0
n;k dn;i +ai + bi � 2

for i ˛ finactiveg

until the inactive mk;i converge (defined as maxð��mðt + 1Þ � mðtÞ��Þ < 10�4).

Final model quality assessment

In silico benchmarking revealed that ML fitting occasionally yielded ‘‘valid’’ solutions that were nonetheless inaccurate in relation to

the known generating ensemble. These inaccurate solutions were reliably identified as having poorly differentiated reactivity profiles,

with relatively few nucleotides differing between model states. Thus, we perform a final quality assessment and warn users of poten-

tial low-quality solutions. These quality checks consist of:

i) Confirming that the RMS difference between all profiles is sufficiently different,
RMSk;l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bm l;i � bmk;i

�2
i ˛ active

q
R 0:01 for all k; l ˛ f1;.Kg; ksl

ii) Confirming that at least 20 nucleotide positions in each profile have distinct reactivities by computing the number distinct

score (ND)
NDk;l =

"X
i

fi , 1A

���bm l;i � bmk;i

��> 0:01
�#

R20 for all k; l ˛ f1;.Kg; ksl
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where 1A is the indicator function.

iii) Confirming that the populations are well-defined according to the information matrix
maxðsðbpkÞÞ < 0:01

where sðbpkÞ is the standard deviation of bpk obtained from the square root of the inverse of the information matrix.

Reactivity normalization

Following clustering, bm parameters are transformed into normalized DMS reactivities that can be used as input for structure

modeling. Raw reactivity profiles ðrraw;kÞ for each state k are obtained by subtracting retoh from bm. Nucleotide-specific normalization

factors ðniÞ that scale A/C andU/G reactivities to similar 0 toz2 ranges are computed as described (Mustoe et al., 2019) based on the

maximum raw reactivities observed over all states. Normalized reactivities ðrkÞ are then obtained as rraw;k=ni.

RING- and PAIR-MaP analysis

Given a converged Bernoulli mixture model fbp; bmg, individual reads can be assigned a posteriori to the component (structure) from

which they were derived. These assigned reads can then be input to PAIR andRING analyses, which identify correlatedmodifications

between pairs of nucleotides that are indicative of through-space base pairing and tertiary interactions (Homan et al., 2014; Mustoe

et al., 2019).

In principle, each read n can be assigned to its most probable parent structure using the complete data vector [xn = (xn,1, xn,2,.,

xn,D)]. However, in practice, themodification status of a nucleotide ðxn;iÞ can bias read assignment and thereby impose correlations in

the assigned data. We address this issue by performing read assignment independently for each pair of nucleotides, excluding the

considered nucleotides from the posterior probability calculation (Figure S1). Specifically, for the nucleotide pair (v, w), the posterior

probability of a read xn being derived from a structure k is computed as

zn;kðv;wÞ =
bpk

Q
c i s v;w

hbmxn;i
k;i

�
1� bmk;i

�1�xn;i
idn;i

PK
m= 1bpm

Q
c i s v;w

hbmxn;i
m;i

�
1� bmm;i

�1�xn;i
idn;i

Only reads that can be confidently assigned to a parent structure, defined as fXkðv;wÞg = fxnjzn;kðv;wÞR0:9g, are used for cor-

relation analysis. Themodification status of v andw is then tabulated across fXkðv;wÞg to obtain the {(unmod, unmod), (mod, unmod),

(unmod,mod), (mod,mod)} contingency table (Homan et al., 2014; Mustoe et al., 2019). Note that this scheme means that the same

read xn can be assigned to different parent structures for different (v, w). For PAIR-MaP analysis, which considers correlations be-

tween windows of 3 nucleotides, nucleotides (v, v+1, v+2, w, w+1, w+2) are excluded from the products in the zn,k(v,w) equation.

As an additional control to eliminate artifactual correlations frombiased read assignment, we perform an identical read-assignment

and correlation analysis on a matched uncorrelated synthetic dataset (Figure S1). The synthetic dataset is generated from the exper-

imentally fitted bpk and bmk;i parameters, treating all nucleotides as independent, and contains an identical number of reads as the

experimental dataset. Any nucleotide pairs (v, w) observed correlated in this null dataset (P<0.001, G-test) are removed from the

set of experimental correlations. Additionally, the contingency table for each (v, w) pair measured for the experimental data is required

to be significantly different than the contingency table obtained for the null dataset (P<0.001, G-test); (v, w) pairs that fail this test are

likewise removed from the set of experimental correlations.

In developing the read-assignment algorithm, we also tested the following alternative strategies: assigning reads using the com-

plete data vector (not excluding (v, w)); using maximum a posteriori assignment; and assigning reads using Monte Carlo selection.

Benchmarking tests on synthetic datasets unequivocally showed the strategy described above to have the best sensitivity and

specificity.

After read assignment, RING and PAIR analysis are performed using v1.1 of RingMapper (Mustoe et al., 2019). RINGs were filtered

for contact distance (>15) (Hajdin et al., 2013; Dethoff et al., 2018), and only positive correlations are shown (Mustoe et al., 2019).

Sequence alignment and data analysis
ShapeMapper (v2.1.5) was used to align and parse mutations from DMS-MaP sequencing experiments using the –amplicon and

–output-parsed-mutations options. Adenine riboswitch data were aligned against the synthesized template sequence, and 7SK

data were aligned against NR_001445.2. DANCE-MaP analysis was performed using the DanceMapper (v1.0) software. For the

adenine riboswitch, DanceMapper was run with default options, which allows clustering into a maximum of 5 components. For

7SK, DanceMapper was run allowing a maximum of 3 clusters (–maxc=3) to save computational time searching for higher-order so-

lutions; the absence of higher-order clustering solutions was confirmed via analysis of selected datasets. PAIR and RING analyses

were performed via DanceMapper using default options.
Molecular Cell 82, 1708–1723.e1–e10, May 5, 2022 e8



ll
Article
7SK replicate analyses
7SK per-nucleotide reactivity data, PAIRs, RINGs, and structure models are derived from single experiments and are representative

of at least 2 independent replicate datasets and analyses. Note that the sensitivity of PAIR and RING analysis depends strongly on

read depth. The high-depth Jurkat in-cell and cell-free datasets shown in Figures 3, S3, and S4 were deliberately sequenced to high

depths (>3 million), and the comparative lack of PAIRs and RINGs in other samples is attributable to lower sequencing coverage (0.3

to 1 million reads per sample). Ensemble populations are reported as the mean and standard deviation across replicates.

PAIR and RING reproducibility for in-cell Jurkat data were assessed by pooling reads from 8 independent replicates to create the

‘‘consolidated replicate’’ shown in Figure S4.

For cell-free Jurkat probing experiments, a total of 4 independent replicates were collected. Data did not reliably cluster into 3

states at read-depths below 1 million (2 of 4 replicates clustered into two-state ensembles consisting of A and B). Population means

and errors were thus computed by comparing results from the single deeply sequenced dataset to a consolidated replicate con-

structed from the remaining 3 replicates. This consolidated replicated was also used to assess PAIR and RING reproducibility in

Figure S4.

Structure modeling
Structure modeling was performed using RNAstructure (v6.2) (Reuter and Mathews, 2010). The partition module was modified to

enable DMS-guided pairing probably calculations using nucleotide-specific DMS reactivity restraint functions (Mustoe et al.,

2019); this modified code is available upon request and will be distributed in future releases of RNAstructure. Normalized DMS

and PAIR restraints output by DanceMapper were passed to fold and partition using the –dmsnt and –x flags, respectively. Pairing

probabilities shown in Figure 1E were computed using DMS reactivities only. All other structure modeling was performed using both

DMS reactivities and PAIR restraints (when available). As part ofDanceMapper, we provide the script foldClusters.py that automates

structure modeling and visualization for all states of a deconvoluted ensemble. Arc diagrams were composed using the ArcPlot

software.

RT-qPCR Analysis
Expression was standardized to indicated control gene (TBP) using the Pfaffl method (Pfaffl, 2001). Standardization of HEXIM1 and

7SK expression to two other housekeeping genes yielded similar results. We also repeated analysis on 7SK using a different primer

set, and again observed similar results. CDK9 andCCNT1 expression were also measured in the same experiments and no changes

in these genes were observed. Data in Figure 6D corresponds to three biological replicates from 2 independent experiments (n = 6),

except the 200 nM GAP-B sample which corresponds to three biological replicates from one independent experiment (n = 3) and

250nM JQ1 is the result of 3 independent experiments (n = 9). Data in Figure 6E correspond to three biological replicates from 3 in-

dependent experiments (n = 9). Analyses were performed using Prism9 (GraphPad) and error bars correspond to standard deviation.

Fitting adenine riboswitch titration data
Following prior studies (Reining et al., 2013), adenine riboswitch titration data were fit assuming the three-state equilibrium

where ON�L and ON+L correspond to adenine-free and adenine-bound ON states, respectively. The equilibrium constant Kpre de-

scribes the pre-equilibrium conversion between the OFF and the ligand-free ON state, and Kd is the dissociation constant of ligand

binding to the ON state:

Kpre =
½ON�L�
½OFF� ;Kd =

½ON�L�½ade�
½ON+ L�

The total RNA concentration [RNA] is the sum of the three species:

½RNA�= ½OFF�+ ½ON�L�+ ½ON+ L�= ½OFF�+Kpre ½OFF�+Kpre

Kd

½OFF�½ade� (Equation 3)

The amount of free ligand, [ade], can be further expressed as a function of the total ligand [ade0]:

½ade� = ½ade0� � ½ON+L�= ½ade0� � ½RNA�+ ½OFF�+Kpre½OFF� (Equation 4)

Substituting Equation 3 into Equation 4 and solving for [OFF] (Mathematica) yields two solutions, the valid one is:

½OFF� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Kd

	
Kpre +K2

pre



½RNA�+ ðKd +Kd Kpre +Kpre½ade0� � Kpre½RNA�Þ2

r
2 KpreðKpre + 1Þ +

� Kd � Kd Kpre � Kpre½ade0�+Kpre½RNA�
2 KpreðKpre + 1Þ
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The combined fraction of species in the ON state, fON, is then:

fON = 1� fOFF = 1� ½OFF�
½RNA�

To account for incomplete saturation, we fit to the equation:

fON = m �
�
1� ½OFF�

½RNA�
�

where m is the fractional saturation, [RNA] and [ade0] are the input concentrations, and fON is the population measured by DANCE-

MaP. Fits were obtained using the curve_fit module of SciPy in Python. The modest deviations of the data from the expected curve

are likely to due to DMSmodification of the adenine ligand, which reduces effective ligand concentration, and a central tendency bias

of DANCE-MaP for clustering into more-equally-weighted groups (for example, a 75:25 ratio may be resolved as a 70:30 ratio). The

fitted saturation fraction (m) values were 0.77 for both replicates, consistent with prior studies (Warhaut et al., 2017).
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