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ABSTRACT: Chemical probing experiments, coupled with empiri-
cally determined free energy change relationships, can enable accurate
modeling of the secondary structures of diverse and complex RNAs. A
current frontier lies in modeling large and structurally heterogeneous
transcripts, including complex eukaryotic RNAs. To validate and
improve on experimentally driven approaches for modeling large
transcripts, we obtained high-quality SHAPE data for the protein-free
human 18S and 28S ribosomal RNAs (rRNAs). To our surprise,
SHAPE-directed structure models for the human rRNAs poorly
matched accepted structures. Analysis of predicted rRNA structures
based on low-SHAPE and low-entropy (lowSS) metrics revealed that,
whereas ~75% of Escherichia coli rRNA sequences form well-
determined lowSS secondary structure, only ~40% of the human
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rRNAs do. Critically, regions of the human rRINAs that specifically fold into well-determined lowSS structures were modeled to
high accuracy using SHAPE data. This work reveals that eukaryotic rRNAs are more unfolded than are those of prokaryotic
rRNAs and indeed are largely unfolded overall, likely reflecting increased protein dependence for eukaryotic ribosome structure.
In addition, those regions and substructures that are well-determined can be identified de novo and successfully modeled by

SHAPE-directed folding.

NA is a central carrier of information in biological systems,

and this information is encoded in both the primary
sequence of the RNA and in higher-order structures that form
when the RNA folds. Both highly stable, base-paired elements
that populate single structures and unpaired or less stable
structures play important biological roles, and the extent of
structure can modulate RNA function by forming, making
accessible, or sequestering interaction sites for proteins, other
RNAs, or small-molecule ligands.'”* Chemical probing
technologies, especially the SHAPE (selective 2'-hydroxyl
acylation analyzed by primer extension) strategy,5’6 have proven
to be powerful tools for characterizing local nucleotide flexibility
in an experimentally concise and accurate way. These nucleotide
flexibility data can be parametrized”® and incorporated into a
standard RNA folding algorithm. This melded SHAPE-directed
approach, applied to many short and medium-sized RNAs and
to long bacterial rRNAs, results in models that show good to
outstanding accuracy when compared to accepted structures
defined by comparative sequence analysis or high-resolution
approaches.””” SHAPE-directed structure modeling can also
accurately model the structures of individual functional
elements in viral, bacterial, and human RNAs and has identified
novel functional motifs in these long RNAs.'*~"*

A current frontier in experimentally directed RNA secondary
structure modeling lies in modeling complex RNAs that contain
a mixture of regions with persistent stable structure intermixed
with regions containing conformationally dynamic elements."*
Although it is clear that conformational dynamics are critical for
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the function of many RNAs, chemical probing-driven
approaches have been largely validated by analysis of RNAs
with very stable and well-defined structures.”'® These test case
RNAs are typically among the most highly structured RNAs
known and include bacterial rRNAs and those RNAs that can be
successfully crystallized.””'® In fact, RNAs with such well-
defined structures are highly unusual and likely represent
outliers in the RNA world. Moreover, widely reported “whole
transcriptome” structure probing experiments involving com-
plex and time-intensive protocols often include minimal
validation, especially as applied to large RNAs. Indeed, the
RNAs or RNA motifs used to validate many “transcriptome-
wide” probing experiments span <200 nucleotides, whereas the
typical transcript in a eukaryotic cell exceeds 2000 nucleotides.

As part of an effort to validate and improve SHAPE data
constraints and parameters used for analysis of long and complex
RNAs and of transcriptome-wide experiments, we used the
SHAPE-MaP (mutational profiling) chemical probing strategy
to examine the structure of full-length human 18S and 28S
rRNAs, which are 1869 and 5070 nucleotides in length,
respectively. SHAPE-directed structure modeling of protein-
free eukaryotic rRNAs in solution consistently showed poor
overall accuracy (Figure 1A) compared to the accepted
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structures, taken to be base pairs visualized in crystallographic
studies.'” This discrepancy prompted us to investigate whether
the inability to model full-length human rRNAs reflects a
limitation of SHAPE-directed structure modeling or represents a
fundamental structural difference between deproteinized
prokaryotic and eukaryotic rRNAs. Previous studies have
shown that it is possible to identify well-structured regions in
RNA genomes,w’13 in long noncoding RNAs,' and in bacterial
mRNAs'” using low SHAPE and low Shannon entropy metrics
(lowSS regions). Using this metric, we discovered that, when
examined in a protein-free solution, human rRNAs are
structurally much less well-determined, and are more unfolded,
than are bacterial rRNAs under comparable conditions. A subset
of regions within the human rRNAs that passed lowSS filters
likely do have stable persistent structure and could indeed be
modeled accurately by SHAPE-directed folding.

B METHODS

Reference Structures. Structures were obtained from
Ribovision'® curated models, revised from crystallographic
and cryo-electron microscopy structures of complete ribosomes
corresponding to Protein Data Bank entries 3R8S, 4GD1, 3J3A,
3J3B, 3J3D, and 3J3F.'"'*°

E. coli and Mammalian Cell Lysis and Protein
Digestion. A 25 mL aliquot of E. coli cells at an ODg, of 0.5
was pelleted at 8000g and 4 °C for 10 min. Cells were lysed in
16.5 mL of E. coli lysis buffer [15 mM Tris (pH 8), 450 mM
sucrose, 8 mM EDTA, and 0.4 mg/mL lysozyme] for S min at 23
°C and then for 10 min at 0 °C. Protoplasts were collected at
5000g and then resuspended in 2 mL of proteinase K buffer [SO
mM HEPES (pH 8), 200 mM NaCl, S mM MgCl,, 1.5% sodium
dodecyl sulfate (SDS), and 0.2 mg/mL proteinase K], vortexed
for 10 s, and then incubated at 23 °C for 5 min and 0 °C for 10
min. For human rRNA data, total RNA from HEK293 cells
(80% confluency) was extracted under conditions designed to
maintain the underlying RNA structure.”’ Cells were lysed in
cytoplasmic lysis buffer [40 mM Tris (pH 8.0), 40 mM NaCl, 6
mM MgCl,, 1 mM CaCl,, 256 mM sucrose, 0.5% Triton X-100,
250 units/mL RNase inhibitor, and 450 units/mL DNase I] for
S min at 4 °C; nuclei were pelleted away, and SDS and
proteinase K were added to final concentrations of 1.5% and 500
ug/mL, respectively. Cytoplasmic lysates were incubated at
room temperature for 45 min. RNA from E. coli or human cell
lysates was extracted twice with 1 volume of a phenol/
chloroform/isoamyl alcohol mixture (25:24:1), pre-equilibrated
in 1.1X RNA folding buffer [110 mM HEPES (pH 8.0), 110 mM
NaCl, and 5.55 mM MgClL], and twice with 1 volume of
chloroform.

SHAPE Probing of Cell-Extracted RNA. E. coli and human
RNA was exchanged into fresh 1.1X RNA folding buffer,
incubated at 37 °C for 20 min, and split into two equal aliquots.
One aliquot was treated with 1/9 volume of 5.2 mg/100 uL S-
nitroisatoic anhydride,”* and the second was treated with the
same volume of dimethyl sulfoxide (serving as an unmodified
control). After incubation for 10 min at 37 °C, RNA was
precipitated by adding 1/10 volume of 2 M ammonium acetate
and 1 volume of isopropanol and incubating the mixture for 10
min at room temperature. Precipitated RNA was pelleted by
centrifugation for 10 min at 12000g and 4 °C. The supernatant
was removed, and the RNA pellet was washed with 1 volume of
75% ethanol and centrifuged at 7500g for S min at 4 °C. The
samples were resuspended in water before being treated with
DNase (TURBO DNase, Thermo Fisher) for 1 h at 37 °C and
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affinity purified (SPRI RNA beads, RNAClean XP, Beckman
Coulter).

Reverse Transcription and Library Preparation of
rRNA. Modified and unmodified control RNA was subjected
to reverse transcription using random nonamer primers as
described previously' " with the addition of an initial 5 min 90
°C denaturation step for human rRNA. Reverse transcription
(SuperScript II) was performed in the presence of 6 mM MnCl,
and 1 M betaine. The resulting cDNA was purified by size
exclusion chromatography (GS0 column, GE Healthcare). The
cDNA was subjected to second-strand synthesis, and double-
stranded DNA was purified (AMPure XP beads in a 1:1.2 ratio,
Agencourt). Sequencing libraries were prepared (NexteraXT,
Ilumina) from 1 pg of DNA. After size selection (with 1:0.8
AMPure XP beads) and quantification (QuBit high-sensitivity
dsDNA assay and Agilent Bioanalyzer 2100), libraries were
sequenced (Illumina MiSeq 600 kits).

Reverse Transcription and Library Preparation of U1
RNA. Reverse transcription was conducted on total human RNA
from HEK293 cells using a gene specific primer for U1 RNA (5'-
CAGGG GAAAG CGCGA A). The cDNA was purified,
amplification and library preparation were performed using a
two-step polymerase chain reaction (PCR), PCR products were
purified, and libraries were sequenced (Illumina MiSeq
instrument) as described previously.”

Structure Modeling. Sequencing data were processed using
ShapeMapper 2 software”’ with a minimum required read depth
of 1000. Superfold® was used to model base pairs and pairing
probabilities. RNA structures were modeled using constraints
from experimental SHAPE reactivities, idealized data (1 for
unpaired nucleotides and 0 for base-paired nucleotides based on
the accepted structure), or no reactivity data (all reactivities set
to —999). rRNAs were modeled with maximum pairing
distances of 600 and 800 nucleotides for the small and large
subunits, respectively. Structures were scored by comparing
predicted minimum free energy structures to accepted
structures'” Scoring allowed for a 1 bp offset.” The sens value
was calculated as the number of correctly predicted base pairs in
the model divided by the number of canonical base pairs in the
accepted structure, excluding pairs for which SHAPE data were
not present at both positions. The ppv value was calculated as
the number of correctly predicted base pairs divided by the
number of predicted base pairs in the model, excluding no data
pairs.

Direct Reactivity Comparison. For direct comparison of
SHAPE reactivities across experiments performed under
identical conditions, reactivity profiles (Figure 2) were
computed as In(rateM/rateU), where rateM and rateU refer
to MaP rates in SHAPE-modified and untreated samples,
respectively. Positions with read depths below 1000 or untreated
MaP rates above 0.05 were excluded.

Identifying Low-SHAPE, Low-Entropy Regions. Low-
SHAPE, low-entropy regions were identified using a combina-
tion of SHAPE reactivity and Shannon entropy, using calculated
base pairing probabilities.'” Median SHAPE reactivity and
Shannon entropy were calculated over S1-nucleotide centered
windows. Regions longer than 25 nucleotides with windowed
SHAPE reactivities below 0.3 and windowed Shannon entropies
below 0.08 were defined as lowSS regions. Regions were
expanded to include nested base pairs that had base pairing
probabilities of >90%. The selected SHAPE and entropy
thresholds employed here balance region detection with
model accuracy, identifying many well-structured regions in
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Figure 1. Accuracy of rRNA structure modeling. (A) Sensitivity (sens) and positive predictive value (ppv) for E. coli and human rRNA structures
modeled with no SHAPE data, with restraints from experimental SHAPE data, and with idealized constraints (assigning SHAPE reactivities of zero and
one, respectively, to base-paired and single-stranded nucleotides in the accepted structure). Values for sens and ppv, shown for the entire sequence and
for lowSS regions only, are colored from low (red) to high (green). (B) Structure models for the human 285 rRNA, positions 160—275. Nucleotides
are colored by SHAPE reactivity constraints used for modeling. This example emphasizes that portions of this RNA, in its protein-free form, fold

differently than the accepted structure.

accurately modeled structures. Stricter (lower) thresholds
increase structure modeling accuracy at the expense of detection
rate, and less stringent (higher) thresholds recover more and
longer lowSS regions but result in less accurate structures
(Figure S1).

B RESULTS

Structure Modeling of Full-Length rRNAs. As an initial
point of comparison, the secondary structures and pairing
probabilities of the E. coli 16S and 23S rRNAs were modeled
using SuperFold® with no SHAPE constraints or using
experimental SHAPE data obtained for this study for RNAs
gently extracted from bacterial cells (at S mM Mg*") while the
overall structure of the rRNA was maintained”'” (see Methods).
In the absence of SHAPE constraints, the structures of the E. coli
16S and 23S rRNA are modeled with low accuracy in agreement
with previous analyses of these and of other RNAs.*” The
observed sensitivities (sens, percent accepted base pairs
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modeled correctly) and positive predictive values (ppv, percent
modeled base pairs in the accepted structure) are in the range of
50—60% (Figure 1A, top; see entire rRNA columns). As
expected,”” structure modeling accuracy notably increased with
the use of SHAPE data as a pseudo-free energy change restraint
to achieve a sensitivity of ~74% for both subunits (Figure 14,
top). A sensitivity of >90% for modeling of the 16S rRNA is
obtained when the RNA is probed at 10 mM Mg’* and regions
not locally compatible with SHAPE data are omitted.” For the
sake of simplicity, this latter adjustment was not applied in this
study, due to the complexity of defining omitted regions for the
human rRNAs. True sens and ppv values are roughly 10% higher
than the values reported here.

Next, we chemically probed human 18S and 28S rRNAs (the
small and large subunit RNAs, respectively) in a similar cell-free
state; the rRNAs were gently extracted from HEK293 cells. As
expected, structure models were inaccurate without SHAPE
constraints, with sens and ppv values in the range of 20—40%, as
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Figure 2. Comparison of the extent of folding in E. coli vs human rRNAs in regions with conserved sequence and structure. (A) Raw (unnormalized)
background-corrected chemical adduct-induced mutational profiling (MaP) rates for E. coli and human ribosomes probed with SNIA. Reactivities
calculated as In(rateM/rateU), where rateM and rateU refer to mutation rates in SHAPE-modified and untreated samples, respectively. Box plots span
the central 50% of the data, the interquartile range [IQR, from quartile 1 (Q1) to quartile 3 (Q3)]. The center line indicates the median. Whiskers
indicate the most extreme points from Q1 — 1.5 X IQR to Q2 + 1.5 X IQR. **Student’s t test p-value of <107°. (B) RNA region that is well and similarly
structured in both E. coli and human rRNAs. Adduct reactivity rates shown as step plots. Accepted, crystal structure defined, base pairs shown as arcs.
Base pairs present in both E. coli and human rRNA are colored black; pairs present in only E. coli or human rRNAs are colored blue or orange,
respectively. p is the Spearman correlation coefficient between profiles. (C) Selected regions in which human rRNA is notably less well-folded than the
homologous E. coli region. Note consistently higher SHAPE reactivity rates for human rRNA than for E. coli.

compared to the accepted models'” (Figure 1A, bottom; entire
rRNA columns). However, in contrast to the E. coli rRNA, the
addition of SHAPE data restraints did not yield accurate
secondary structure models for the full-length human rRNAs.
The human 18S and 28S rRNAs were modeled with sensitivities
of only 32% and 61%, respectively, meaning that the SHAPE-
directed structures still deviated substantially from the accepted
models (Figure 1A, bottom; Figure 1B).

Modeling rRNA Structure with Idealized Data. The
SHAPE-directed pseudo-free energy change strategy was
developed ];rlmarily using prokaryotic RNAs with compact
structures,”” and one formal possibility was that the resulting
parameters are not appropriate for modeling human rRNA. We
therefore examined whether idealized restraints based on the
accepted model of the human rRNAs would allow accurate
folding. To create idealized data sets, we assigned a SHAPE
reactivity of zero to nucleotides that are base-paired and a
SHAPE reactivity of 1 to nucleotides that are single-stranded in
the accepted secondary structures of the rRNAs. Models
constrained by the idealized SHAPE data resulted in secondary
structure models for the E. coli rRNAs with sens and ppv values
in the range of 87—90% (Figure 1A, top). The idealized data
thus yielded a significant increase in modeling accuracy.
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The idealized restraints also notably improved modeling of
the human rRNAs with sens values of 65% and 90% for the 18S
and 28S rRNAs, respectively; some regions were modeled with
very high accuracy (Figure 1B). These accuracies are not quite as
high as those of E. coli rRNA models but are sufliciently high to
strongly suggest that the observed disagreements between
SHAPE-directed models and accepted structures are not due to
a general limitation of SHAPE-constrained structure modeling
but, instead, reflect fundamental biological structural differences
between protein-free bacterial and human rRNAs. Indeed, there
are many regions in the human rRNAs in which the observed
experimental SHAPE data are simply incompatible with the
accepted structure; these regions can be accurately modeled into
the accepted structure when guided by idealized data, however
(Figure 1B).

Direct Comparison of SHAPE Reactivities between
Human and E. coli rRNA. As a second approach to establish
whether the E. coli and human rRNAs show fundamentally
different levels of folding, distinct from secondary structure
modeling, we directly compared SHAPE reactivities between
the two species. We examined SHAPE reactivity profiles over the
full rRNA lengths and over selected regions in the small subunit
with locally conserved sequence and structure, using raw
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Figure 3. Structural characterization of the human 18S rRNA. (A) Model of the full-length 18S rRNA with arcs representing correct, incorrect, and
missing base pairs relative to the accepted structure (top). SHAPE reactivity (black) and entropy (brown) shown as medians over S1-nucleotide
centered windows along the full-length 18S rRNA with the axes crossing at 0.3 and 0.08, respectively (middle). SHAPE-directed structure models for
lowSS regions modeled as independent elements (bottom). (B) Nucleotide-level models of well-structured regions of the 18S rRNA. Nucleotides are
colored by SHAPE reactivity (see inset to Figure 1). Missed and incorrect base pairs are shown with red and purple arcs or lines, respectively; in
general, these base pairs are supported by the experimental SHAPE reactivities but are not consistent with the accepted structure.

background-corrected SHAPE adduct-induced mutation rates
from probing experiments performed under identical con-
ditions. Global SHAPE reactivity profiles for human rRNA are
substantially shifted to higher modification rates as compared to
those of E. coli rRNA (Figure 2A). The human rRNAs are
therefore overall intrinsically more reactive to SHAPE than are
the E. coli rRNAs.

We also focused on reactivity profiles for four regions showing
clear sequence and structure conservation between the human
and E. coli small subunit rRNAs, defined as gap-free alignments
over at least 15 nucleotides, with at least 50% sequence identity
and one shared helix longer than 2 bp. In E. coli numbering, these
regions were helix 8 (residues 144—178), helix 18 (500—545),
helix 23 (673—717), and helix 24 (765—820), all of which have
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well-described roles in ribosome function. Helix 18 is a
component of the mRNA entry site latch,** and helices 8, 23,
and 24 all form important bridging interactions with the large
subunit.*®

Helix 23 is fully or nearly fully folded in both E. coli and human
rRNAs, as evidenced by shared low reactivities over base-paired
positions and substantially similar reactivity profiles (Figure 2B).
In contrast, the other three regions are folded in E. coli rRNA but
strikingly unfolded in human rRNA, even though the expected
secondary structures are similar (Figure 2C). Thus, isolated
human rRNAs adopt structures notably different from those of
their E. coli counterparts, even in regions with conserved
sequences and functions.
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Figure 4. Structural characterization of the human 28S rRNA. (A) Model of the full-length 28S rRNA with arcs representing correct, incorrect, and
missing base pairs relative to the accepted structure (top). SHAPE reactivity (black) and entropy (brown) shown as medians over S1-nucleotide
centered windows along the full-length 285 rRNA with the axes crossing at 0.3 and 0.08, respectively (middle). SHAPE-directed structure models for
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base-paired regions or low reactivity in consecutive unpaired regions). Nucleotides are colored by SHAPE reactivity (see inset to Figure 1).

Identification of Well-Structured (lowSS) RNA Re-
gions. Prior work has emphasized that regions that are highly
structured (as detected by a low local SHAPE reactivity) and
have well-determined structures (supported by a low Shannon
entropy) tend to be strongly correlated with function.
These regions might comprise well-folded elements within the

10—12
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human rRNAs where structure can be more accurately predicted
by SHAPE-directed structure modeling. Local regions of low
SHAPE and low Shannon entropy (lowSS) within the E. coli and
human rRNAs were identified using a combination of SHAPE
data and SHAPE-informed Shannon entropy, calculated over
smoothed windows across the primary sequence.”'""> Although
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Figure S. Extent of well-determined structures in small and large RNAs: (A) human U1 snRNA, (B) E. coli 16S and 23S rRNA, and (C) human 18S and
28S rRNA. Arcs represent modeled base pairing probabilities (colors defined in the key). Windowed SHAPE reactivities and entropy are shown in
black and brown, respectively. Well-structured regions are highlighted in light blue. Percentages of nucleotides in lowSS regions exclude positions with
no SHAPE data (primarily located near the 5’ and 3’ ends of each RNA and one central section of the 285 rRNA).

SHAPE reactivity influences the calculation of Shannon entropy,
the SHAPE and entropy metrics provide orthogonal informa-
tion, and the combination of the two terms identifies regions
whose secondary structures are modeled with the highest
accuracy (Figure S1). Reactivity and entropy thresholds were
chosen to maximize the overall number of nucleotides modeled
while maintaining high secondary structure modeling accuracy.

We identified well-structured regions in both E. coli and
human rRNAs by the lowSS criteria and then modeled each
using SHAPE restraints. For the E. coli rRNAs, focusing on the
lowSS regions had a small, but positive, effect on the already high
model accuracy (Figure 1A, top). LowSS regions comprise 81%
and 69% of the E. coli 16S and 23S rRNAs, respectively, and
these extensive regions of well-defined structure allow both
RNAs to be modeled with high accuracy, even outside of the
lowSS regions. In the human 18S rRNA, seven well-structured
regions were identified, and these were modeled with a base pair
sens of 76%, a dramatic improvement over the 32% sensitivity
for the full-length rRNA (Figures 1A and 3). The human 28S
rRNA model contained 14 lowSS regions, and these were
modeled with 77% sens (Figures 1 and 4).

This analysis reveals that, although SHAPE data alone are ill-
suited for recovering the accepted structures of full-length

3383

human rRNAs, the low-SHAPE, low-entropy strategy robustly
identifies local well-defined secondary structures. Well-struc-
tured regions that pass the lowSS filters in human rRNA involve
important functional elements such as the L1 stalk, the GTPase-
associated center, the A site finger, and an element of the 18S
rRNA that directly interacts with mRNA in the E site’*™°
(Figure S2).

Local rRNA Refolding. The lowSS regions in the human
rRNAs were generally modeled to good agreement with the
accepted structures. However, SHAPE reactivities in some
regions, including some lowSS regions, are clearly not consistent
with the accepted structures in regions of both human 18S and
28S rRNAs (Figures 1B and 4B, boxed residues). We interpret
these data as indicating that, for RNAs chemically probed in a
cell-free (and protein-free) state, models for lowSS regions are
better representations of these regions than are the accepted
structures, likely because these regions locally refold when RNA
is removed from the cellular (and native protein) environment.

B DISCUSSION

This work supports three overarching conclusions. First, folding
of the protein-free bacterial and human rRNAs is fundamentally
different: in solution, the human rRNA structure is more
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unfolded and less well-determined than that of the bacterial
rRNAs (Figures 1 and 2). Second, algorithms that couple
chemical probing data with empirical free energy change
relationships cannot recover the accepted structure of all
RNAs with high accuracy. This inability can be attributed to
RNAs that rarely populate the accepted structure, as notably
observed here for the human rRNAs, and to small errors in
thermodynamic and chemical reactivity parameters that
especially limit the accuracy of modeling long-range inter-
actions.”"* Third, the low-SHAPE reactivity, low-Shannon
entropy (lowSS) metric is a powerful approach for character-
izing the well-determinedness of folding for large RNAs and for
addressing the challenge presented by conclusion 2. The lowSS
metric identifies the subset of regions in long RNAs that can be
modeled accurately by SHAPE-directed folding (Figures 1, 3,
and 4).

SHAPE provides empirical information about local nucleotide
flexibility that can be used to model the secondary structure of
short RNAs, bacterial rRNAs, and numerous other RNAs—
which have stable and well-defined structures—with high
accuracy.”® However, SHAPE-directed folding alone can
produce misleading or inaccurate models for long RNAs that
contain poorly structured regions or regions capable of adopting
multiple conformations. This challenge in de novo modeling of
complex RNAs can be addressed, in part, by focusing on those
regions within a large RNA that do fold to form a well-defined
structure. The lowSS filter appears to be robust for both short
and long RNAs and across RNAs with different levels of
structure. For example, a majority of nucleotides in the highly
structured human U1 snRNA (78%) meet the lowSS criterion
(Figure SA). Both E. coli 16S and 23S rRNAs are well-structured
with 81% and 69% of nucleotides, respectively, in lowSS regions
(Figure SB). On the basis of these three RNAs, both short and
long RNAs can have extensive lowSS regions. In contrast, the
human 18S and 28S rRNAs, with only 34% and 43% of
nucleotides in lowSS regions, respectively, have extensive poorly
structured regions (Figure 5C). Many regions of human rRNA
are simply unfolded, despite sharing conserved sequence and
structure with E. coli rRNA (Figure 2).

Our data emphasize that human rRNA is intrinsically less
structured than E. coli rRNA under the conditions probed here.
This study also suggests that the human rRNAs may not be well
suited for use in validating modeling accuracies for tran-
scriptome-wide studies. Eukaryotic rRNAs likely require more
support from proteins for full structure formation than do
bacterial rRNAs, consistent with models of ribosome evolution
that show the accretion of a protein shell in eukaryotic
lineages.””** Eukaryotic ribosome structure, assembly, and
regulation are all more complex than those of prokaryotic
ribosomes.” Other aspects of the eukaryotic cellular environ-
ment, such as local ion concentrations or differences in
macromolecular crowding, might play larger roles for eukaryotic
ribosome assembly and folding than for assembly of the bacterial
translation machinery. Unlike the relatively stable “RNA rocks”
of prokaryotic ribosomes, only a small fraction of eukaryotic
rRNA appears to be well folded in isolation.

Eukaryotic rRNAs, multikilobase mRNAs,'? viral RNAs,'>!!
and noncoding RNAs" appear to be less structured overall than
well-understood short structured RNAs like bacterial ribos-
witches®*° but do have regions of stable functional structures. In
such cases, lowSS regions provide a starting point for locating
well-folded and potentially functional structural elements.
Indeed, lowSS regions identify the vast majority of well-
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. . e . 10,11,13
characterized functional motifs in viral genomic RNAs, ™~

and the lowSS metric enabled de novo identification and
validation of multiple novel regulatory elements in the E. coli
transcriptome.'” Similarly, well-structured lowSS regions in the
human rRNAs include important functional elements. The
lowSS metric will likely prove to be a broadly useful tool for
future modeling and functional studies of diverse classes of long
RNA transcripts.
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