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RNA structure and dynamics are critical to biological function.
However, strategies for determining RNA structure in vivo are
limited, with established chemical probing and newer duplex
detection methods each having deficiencies. Here we convert the
common reagent dimethyl sulfate into a useful probe of all 4
RNA nucleotides. Building on this advance, we introduce PAIR-
MaP, which uses single-molecule correlated chemical probing to
directly detect base-pairing interactions in cells. PAIR-MaP has
superior resolution compared to alternative experiments, can
resolve multiple sets of pairing interactions for structurally
dynamic RNAs, and enables highly accurate structure modeling,
including of RNAs containing multiple pseudoknots and exten-
sively bound by proteins. Application of PAIR-MaP to human
RNase MRP and 2 bacterial messenger RNA 5′ untranslated re-
gions reveals functionally important and complex structures un-
detected by prior analyses. PAIR-MaP is a powerful, experimentally
concise, and broadly applicable strategy for directly visualizing RNA
base pairs and dynamics in cells.

RNA structure modeling | duplex detection | RNA dynamics | single
molecule | RING-MaP

RNA molecules are strongly driven to fold back on themselves
into base-paired secondary structures. These structures play

central roles in RNA biology, from mediating complex functions
such as RNA catalysis and specific ligand recognition, to more
broadly tuning RNA sequence accessibility to regulate processes
such as translation initiation (1, 2). Furthermore, many RNAs fold
into multiple structures, enabling molecular switching functions
(3). Accurately resolving RNA structure and its potential dynamic
complexity is therefore essential for understanding RNA function.
Chemical probing experiments are among the most broadly

useful classes of experiments for characterizing RNA structure
(4–6). SHAPE (selective 2′-hydroxyl acylation analyzed by primer
extension) reagents, dimethyl sulfate (DMS), or other chemical
probes are used to selectively modify conformationally flexible
nucleotides and reactivity is measured using sequencing ap-
proaches such as mutational profiling (MaP) (7). These reactivity
data provide powerful insight into local RNA structure and can be
used to guide accurate RNA structure modeling (7–9). Neverthe-
less, chemical probing experiments are limited in that they do not
detect RNA base pairing interactions directly—structure can only
be inferred based on compatibility with reactivity data. In some
cases, the reactivity data may be equally compatible with multiple
structures. Even if the structure inference problem is uniquely
defined, follow-up mutational analysis is often desired to obtain
direct evidence of pairing interactions. Chemical probing data are
also poorly suited for resolving alternative structural states of dy-
namic RNAs. Finally, conventional chemical probing data are
difficult to interpret for RNAs bound by proteins or in cells.
To address the limitations of chemical probing experiments,

new strategies have been developed that use scanning mutagenesis
and chemical probing (mutate-and-map) to identify interacting
nucleotides (10) or detect RNA duplexes by cross-linking and
proximity ligation (11, 12). However, both of these classes of ex-
periments are laborious, with the former limited to in vitro settings
and the latter having low resolution (10 to 20 nucleotides [nt]) and

insufficient information to rank and define complete RNA struc-
tures (13). We recently introduced a third strategy that uses single-
molecule chemical probing experiments (14) to detect correlated
modifications between paired nucleotides (15), but this approach
was also limited to in vitro settings and the underlying mech-
anism has been questioned (10). Thus, current duplex detection
strategies retain substantial limitations, being restricted either to in
vitro contexts or lacking the desired quantitative accuracy and
experimental concision.
Here, we introduce a strategy that converts the classic reagent

DMS into a probe of all 4 RNA nucleotides. We combine this
advance with new analysis algorithms to demonstrate that
single-molecule correlated chemical probing sensitively and spe-
cifically detects RNA duplexes in cells, comprising a strategy we
term PAIR-MaP (pairing ascertained from interacting RNA
strands measured by mutational profiling). PAIR-MaP permits
simultaneous measurement of local chemical probing data and
duplex interactions via one straightforward chemical probing
experiment, enabling accurate RNA structure modeling and
revealing alternative RNA structural states. Application of PAIR-
MaP to human RNase MRP and the Escherichia coli S2- and S4-
binding autoregulatory elements reveals previously undetected,
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functionally important structural features for these RNAs, high-
lighting the broad potential of PAIR-MaP for understanding
RNA biology.

Results
DMS Probes Structure of All 4 Nucleotides. DMS is among the most
commonly used RNA chemical probes, favored for its cell per-
meability and ability to heavily modify RNA molecules during
correlated chemical probing experiments. However, a major limi-
tation is that DMS does not typically react with the base pairing
face of guanosine (G) and uridine (U) nucleotides due to pro-
tonation of the respective N1 and N3 positions at neutral pH
(pKa ≈ 9.2; Fig. 1A) (4, 16). We discovered that DMS can be con-
verted into a useful probe of all 4 nucleotides by performing modi-
fication at pH 8, which promotes transient deprotonation of G and U
and reaction with DMS. Optimized buffer conditions consisting of
200 mM bicine at pH 8.0 were found to maintain a well-controlled
pH without quenching the DMS reaction (SI Appendix, Supporting
Methods). These optimized conditions were used to perform
multiple-hit DMS probing of natively extracted (termed “cell-
free”) total E. coli RNA, and DMS methylation sites were de-
tected using the single-molecule MaP strategy (14). Analysis of the
16S and 23S ribosomal RNAs (rRNAs) reveals that U and G
nucleotides are consistently modified in a structure-specific man-
ner: Single-stranded U and G positions are modified at average
rates of 1.3% and 0.7%, respectively, whereas paired positions are
protected and have ∼4-fold lower modification rates (Fig. 1 B and
C). The modification rate for U and G residues is ∼10-fold lower
than for A and C (Fig. 1B) but is sufficiently high for quantification
by the MaP strategy (14).

Benchmarking across a diverse panel of RNAs with known
structures confirmed that DMS reactivity at U and G residues
provides an informative measurement of nucleotide pairing status.
In addition to the 16S and 23S rRNAs, we used MaP to quantify
DMS modification of 5S rRNA, RNase P, and transfer-messenger
RNA (tmRNA) in cell-free E. coliRNA. We also performed DMS
probing experiments on cell-free total RNA from human Jurkat
cells and quantified modifications of U1 small nuclear RNA and
RNase MRP (RMRP). Remarkably, in these cell-free experi-
ments, DMS reactivity discriminates single-stranded versus paired
U residues with accuracy comparable to that for A and C nucle-
otides and also performs comparably to SHAPE reactivity (Fig.
1D). DMS reactivity is less discriminative for G nucleotides but is
still informative (Fig. 1D; area under the receiver operating
characteristic curve [AUC] = 0.6 to 0.7; SI Appendix, Table S1).
The decreased specificity observed for G modifications is most
likely attributable to nonspecific DMS modification at the N7 po-
sition of G (4) that is partially detected by MaP.
We also assessed whether DMS is an effective probe of G and U

nucleotides in cells. Living E. coli or human Jurkat cultures were
supplemented with bicine probing buffer and treated with DMS.
As expected, DMS is less effective at discriminating single-
stranded versus paired nucleotides in cells due to protection by
proteins, particularly for the E. coli rRNAs (Fig. 1 C and D).
Nonetheless, DMS still measures structure-specific modification of
U nucleotides in cells in all RNAs, again with similar discrimina-
tory power as for A and C nucleotides (Fig. 1 C and D). DMS
reactivity at G nucleotides is weakly informative for E. coli non-
coding RNA (ncRNA) structure (AUC = 0.6) but is uninformative
for human ncRNAs and E. coli rRNAs in cells (AUC = 0.48 to
0.55; SI Appendix, Table S1).
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Fig. 1. DMS probes all 4 RNA nucleotides. (A) Deprotonation equilibrium of G and U nucleotides (16). (B) DMS modification rates measured by MaP for E. coli 16S
and 23S rRNAs probed under cell-free conditions in buffered bicine (pH 8.0). Histograms are shown for single-stranded (red) and paired (blue) nucleotides based on
the accepted folded structures. (C) Normalized DMS reactivities for a representative region of the 16S rRNA (nucleotides 693 to 718). U and G nucleotides are
highlighted (blue). Red, orange, and black denote high, moderate, and low reactivity, respectively. The secondary structure is indicated by arcs (bottom). (D)
Receiver operating characteristic (ROC) curves for DMS-MaP reactivity profiles calculated for different RNAs. E. coli ncRNAs (RNase P and tmRNA) are shown in
orange, E. coli rRNAs (5S, 16S, and 23S rRNAs) are shown in red, and human ncRNAs (U1 snRNA and RMRP) are shown in blue. Cell-free 1M7 SHAPE data from the E.
coli 16S and 23S rRNA (17) is provided as a reference. Area under the ROC curve (AUC) values are provided in SI Appendix, Table S1.
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Combined, our data clearly show that DMS is an effective
probe of all 4 RNA nucleotides at pH 8.0, including in living
bacterial and human cells. Separately, our data also demonstrate
that the MaP strategy, in conjunction with the ShapeMapper
bioinformatics pipeline (17), detects DMS modifications with a
high degree of structural specificity without need for specialized
enzymes or separate counting of termination events (18, 19).

PAIR-MaP Enables Direct Visualization of RNA Base-Pairing Complexity.
The ability to probe all 4 nucleotides with DMS is an important
experimental innovation but does not address the core limitation
of conventional RNA structure probing analysis: Structures are not
visualized directly but only inferred based on consistency with a
1-dimensional reactivity profile. A unique advantage of MaP
compared to alternative “seq” readout strategies is that MaP al-
lows measurement of multiple, correlated DMS modifications
within a single RNA molecule (14). We previously showed that we
could use correlated chemical probing to detect correlated modi-
fications that occur between A–U and G–C base pairs in model in
vitro transcripts (15). However, we were unable to detect base
pairs in endogenous RNAs due to low DMS reactivity at G and U
positions. We now exploit PAIR-MaP to directly detect pairing
interactions in endogenous RNAs, including in living cells, at high
resolution and specificity.
PAIR-MaP is predicated on detecting correlated DMS modifi-

cations on opposing strands of paired duplexes (Fig. 2A). While
paired nucleotides are normally protected, equilibrium fluctua-
tions transiently expose paired bases, mediating low but detectable
rates of DMS modification. Chance modification of one base will
permanently destabilize the base pair, increasing the probability of
subsequent DMS modification at either the directly opposing base
or neighboring bases (Fig. 2A). We detect these characteristic
correlated modification signals by performing correlation analysis
over 3-nt windows, which amplifies the weak modification sig-
nals of paired nucleotides by summing over nearest neighbors.
Paired duplexes can then be specifically identified as lowly reac-
tive, complementary 3-nt windows that are modified in a corre-
lated manner (Fig. 2B). Significantly, PAIR-MaP detects duplexes
formed in the predominant structure of an RNA as well as du-
plexes formed in lesser but appreciably populated alternative or
misfolded structures. We therefore classify PAIR-MaP correla-
tions into 2 classes (Fig. 2B and SI Appendix, Fig. S1). “Principal”
correlations are defined to occur between lowly reactive positions
and are unambiguously the strongest correlation for each set of
interacting nucleotides, providing high-confidence indicators of
the predominant structure. “Minor” correlations represent weaker
correlations or occur between moderately reactive nucleotides and
report on unstable and alternative RNA duplexes. An abridged
description of the PAIR-MaP algorithm is provided in Materials
and Methods, and full details are provided in SI Appendix, Sup-
porting Methods and Fig. S1.
As an initial validation of our strategy, we used PAIR-MaP to

probe an in vitro transcript of the Vibrio vulnificus add adenine
riboswitch, an established model system known to adopt multiple
structures (Fig. 2C) (20, 21). PAIR-MaP immediately reveals the
complex structural landscape of the riboswitch. In the absence of
adenine ligand, PAIR-MaP reports a superposition of multiple
pairing interactions recapitulating the ligand-free aptamer (apoA)
and alternative structure (apoB) equilibrium (Fig. 2C). The rela-
tive strengths of the P1, P1B, and P2 helix correlations are also
consistent with reported stabilities of these helices (populations
between 20 and 50%) (20, 21). Upon addition of the adenine li-
gand, the PAIR-MaP correlation network markedly consolidates.
All apoB-specific correlations disappear, consistent with the
expected depopulation of the apoB state (expected population
<25%), while P1 correlations significantly strengthen (expected
population >75%) (20, 21). We also observe several minor cor-
relations arising from tertiary interactions and indirect cooperative

folding interactions, representing false-positive base pairs (but true
tertiary interactions). Thus, other types of structural correlations
can occasionally pass through the PAIR-MaP filtering algorithm.
Combined, these data validate that PAIR-MaP directly visualizes
RNA base pairing and structural complexity.

Direct Visualization of RNA Base Pairing in Cells. We next bench-
marked PAIR-MaP using endogenous E. coli and human RNAs,
probed in the cell-free state. PAIR-MaP again provides a detailed
visualization of the architectures of these diverse RNAs. For the
16S and 23S rRNAs, extensive correlations clearly define indi-
vidual domains, including numerous duplexes spanning >350 nt
(Fig. 3 and SI Appendix, Figs. S2–S4). PAIR-MaP correlations also
clearly define pseudoknots (PKs) in tmRNA and RNase P (Fig. 3E
and SI Appendix, Fig. S2).
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Under cell-free conditions, principal PAIR-MaP correlations
are strongly predictive of the known secondary structure with
an average positive predictive value (ppv) of 88%. Furthermore,
many of the “false-positive” correlations (corresponding to corre-
lations that do not match the known secondary structure) are

consistent with misfolding of the deproteinized RNAs and, indeed,
provide direct evidence of such misfolding. Of particular note, we
observe strong PAIR-MaP signals supporting misfolding of the
136 to 227 region of the 16S rRNA (Fig. 3B); prior SHAPE
probing studies suggested that this region significantly populates
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structures are shown at the top, normalized DMS reactivities in the middle, and PAIR-MaP data at the bottom. Known duplexes that overlap primer-binding sites
and thus lack PAIR-MaP data are drawn in gray. tmRNA PKs are labeled.
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an alternative conformation in the absence of proteins, but the
validity of this misfolding event had remained controversial (8, 22,
23). We also observe PAIR-MaP signals supporting previously
suggested misfolding events elsewhere in the 16S rRNA, 23S
rRNA, and human RMRP (Fig. 3A and SI Appendix, Figs. S3 and
S4) (8, 24, 25). When these regions with clear alternative folds are
excluded, the average ppv of principal correlations increases to
92% (Table 1). The remaining false positives are likely a mixture
of indirect interactions reflective of cooperative folding events and
“real” misfolding interactions that we cannot confidently assess.
Minor PAIR-MaP correlations reveal additional complexities of

ncRNA folding landscapes under cell-free conditions (Fig. 3 and
SI Appendix, Figs. S2–S4); 30 to 50% of minor correlations cor-
respond to native duplexes that are only partially folded under cell-
free conditions. The other minor correlations are more challenging
to evaluate. As noted above in our analysis of the adenine ribos-
witch, we expect some fraction of minor PAIR-MaP correlations
to report indirect cooperative folding interactions. This feature is
particularly evident for RNase P, where nonnative PAIR-MaP
signals are best explained as indirect interactions from global
unfolding/folding transitions (SI Appendix, Fig. S2). In contrast, for
RNAs such as the 16S and 23S rRNA, a large fraction of the minor
PAIR-MaP correlation network likely reflects alternative mis-
folded states (Fig. 3A and SI Appendix, Fig. S4).
Strikingly, PAIR-MaP is also highly predictive of base-paired

structure in cells for tmRNA, U1, and RMRP (ppv = 92 to 100%
for principal correlations; Fig. 3 D and F, SI Appendix, Fig. S3, and
Table 1). Indeed, principal and minor PAIR-MaP correlations
consolidate around the known structure of each RNA compared
to cell-free PAIR-MaP networks, consistent with proteins stabi-
lizing a single predominant structure in cells (SI Appendix, Figs.
S2 and S3). However, we were not able to perform PAIR-MaP
analysis for the in-cell rRNAs and RNase P. These RNAs are
exceptionally stable such that paired nucleotides are almost never
modified, precluding measurement of PAIR-MaP correlations.
Such datasets are readily automatically identified and rejected by
the PAIR-MaP algorithm (Materials and Methods).
Overall, ∼45% of helices are detected as principal PAIR-MaP

correlations (Table 1), but helix detection sensitivity (sens) does
vary with molecular context. Analysis of our cell-free datasets re-

veals that PAIR-MaP has greatest sens (>50%) when each duplex
strand contains an A or C (for example, AAG paired to CUU).
Conversely, sens is lowest (<10%) when one strand consists en-
tirely of G residues (GGG paired to CCC). This sequence de-
pendence is consistent with the reactivity and specificity biases of
DMS defined above. Sensitivity is additionally impacted by
thermodynamic stability, with duplexes containing 2 or more
G–C pairs detected with lower sens (for example, CCG paired
to CGG is detected with ∼30% sens). As a single-molecule
method, PAIR-MaP also requires that duplexes occur in the
same sequencing read, corresponding to an interduplex length
limitation of ∼500 nt with current technology. Finally, sensitiv-
ity depends strongly on sequencing depth: A depth of at least
∼400,000 is required to detect duplex correlations at ppv >0.8 and
sens >0.3 (SI Appendix, Fig. S5).
In sum, PAIR-MaP is a specific and sensitive technique for

directly detecting duplexes in endogenous RNAs in cells and
reveals significant complexity in the folding landscapes of ncRNAs
that is counteracted by protein stabilization in cells.

Accurate in-Cell Structure Modeling.While PAIR-MaP provides an
important model-free strategy for detecting RNA duplexes and
characterizing RNA structural complexity, one critical end goal
of chemical probing analysis is to determine complete RNA
structure models. Building on prior studies, we developed a
strategy to use PAIR-MaP data to enable highly accurate RNA
structure modeling, including in cells.
We first capitalized on our discovery that DMS reacts with all

4 nucleotides by developing nucleotide-specific pseudo free-energy
functions for DMS-directed structure modeling in RNAstructure
(SI Appendix, Supporting Methods) (26, 27). On its own, this DMS-
directed structure modeling strategy enables highly accurate de
novo structure determination with average ppv ≈ 90% and sens ≈
90% when applied to our panel of endogenous E. coli and human
RNAs (SI Appendix, Table S2). This level of accuracy is more than
sufficient for mechanistic hypothesis generation. Nevertheless,
some important structural features are missed, including 1 of the 4
PKs in tmRNA (Fig. 4). We therefore developed an integrated
modeling strategy in which we both apply per-nucleotide DMS
reactivity restraints and also provide modest energetic bonuses to

Table 1. Accuracy of PAIR-MaP analysis and DMS+PAIR-MaP guided structure
modeling

ppv and sens are reported for principal PAIR-MaP correlations, for complete secondary structure
models that incorporated DMS + PAIR-MaP restraints, and structure models predicted without
experimental data (no data). Results are colored on a scale to highlight low (red) to high (green)
accuracy. Model-free PAIR-MaP sensitivities are colored on a different scale, reflecting that 50% sensitivity
is typically sufficient to define global RNA architecture (asterisk and box outline). PKs, number of
PKs. RNAs with significant misfolding are colored gray and are excluded from averages.
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base pairs directly detected by PAIR-MaP. This integrated strategy
is less accurate when modeling tmRNA under cell-free conditions
due to the effects of several nonnative PAIR-MaP correlations
that likely reflect misfolding in noncellular contexts (Table 1 and
SI Appendix, Fig. S2). However, for all other RNAs and conditions,
this integrated strategy yields equivalent or higher-accuracy struc-
ture models (Table 1 and SI Appendix, Fig. S2). Notably, when using
in-cell data, this integrated strategy recovers tmRNA structure with
near-perfect accuracy, including all 4 PKs (ppv = 99% and sens =
97%; Fig. 4). It is worth emphasizing that tmRNA, with its mixture
of long-range interactions and multiple PKs, is one of the most
difficult structure modeling challenges of which we are aware. Thus,
while DMS-directed structure modeling provides excellent accu-
racy, integrated modeling with PAIR-MaP data can provide notable
improvement for RNAs with particularly challenging structures.
Overall, the ∼90% accuracy of DMS+PAIR-MaP-directed

structure modeling is comparable to best-in-class SHAPE-based
strategies (SI Appendix, Table S2) (7). It is particularly striking
that, using PAIR-MaP, accuracy remains similar or increases in cells
for all RNAs. DMS reactivity has been widely used to model RNA
structure de novo. To date, the accuracy of DMS-directed structure
modeling has been examined only for short RNAs (27). This work
provides quantitative validation that DMS can be used to guide
accurate structure modeling of long, complex RNAs. Furthermore,
this analysis provides important systematic validation that de novo
structure modeling can be performed accurately in cells, which has
not been previously validated for any reagent.

Identification of an Unnoticed Conserved Helix in RMRP. During
benchmarking of PAIR-MaP on human RMRP it became clear
that the accepted RMRP structure was incomplete. RMRP is an
essential ncRNA, conserved across eukaryotes, that is involved in
rRNA processing and other potential functions (28). RMRP is
ancestrally related to the eukaryotic RNase P RNA, and phylo-
genetic analyses have shown that RMRP and RNase P share
similar conserved structures (29, 30). As noted above, RMRP
clearly misfolds under cell-free conditions (SI Appendix, Fig. S3).
This misfolding is resolved in cells, with PAIR-MaP correlations
and structure modeling showing that RMRP forms the accepted
base-paired structure with one notable exception. Strikingly, PAIR-
MaP revealed the presence of an additional “P7” helix that closes
the catalytic core domain of RMRP (Fig. 5A). The P7 helix is a
conserved architectural feature of RNase P but, to date, has not
been observed in RMRP (30). We used this updated structure
model to realign the published RMRP multiple-sequence align-
ment (31), which newly reveals that the P7 extension is conserved
from yeast to humans (Fig. 5B). Furthermore, single-nucleotide
mutations or insertions within P7 are pathogenic in humans (Fig.
5B) (32). Thus, in-cell PAIR-MaP enabled discovery of a func-
tionally important helix missed by previous analyses and provides
insights into the structural basis of human disease.

Mechanistic Insights into Bacterial mRNA Autoregulatory Elements.
We next applied PAIR-MaP to examine the structures of RNAs
that have proven challenging to characterize via traditional
approaches. We focused on two E. coli 5′ untranslated regions
(5′-UTRs) that contain regulatory elements that bind ribo-
somal proteins (r-proteins) to inhibit translation of downstream
genes, forming a feedback loop that ensures balanced synthesis of
r-proteins and rRNA (33). These 5′-UTRs are good exemplars of
the functional relationships between RNA structure and protein
binding that govern regulation of many RNAs in vivo.
We first applied PAIR-MaP to characterize the S4-binding

element (S4E) located upstream of the E. coli rpsM gene (also
termed the α-operon). Prior studies have suggested that S4 induces
a conformational change in the S4E, stabilizing a double PK
structure that inhibits translation of rpsM and downstream genes
(34, 35). However, the proposed double PK is not fully consistent

with biochemical and genetic data, and the structure of the S4E in
the absence of the S4 protein is unknown (SI Appendix, Supporting
Discussion and Fig. S6). Cell-free PAIR-MaP data show that the
rpsM 5′-UTR and coding sequence fold into 4 stem–loop helices
(Fig. 6A). Of particular note, we identify an unstable helix (H3)
formed between the Shine–Dalgarno sequence and the rpsM
coding sequence. Strikingly, in-cell experiments reveal stabilization
of H3 as well as appearance of signals indicating loop–loop pairing
between H2 and H3, consistent with S4 protein binding and stabilizing
a kissing loop structure in cells (Fig. 6B). This kissing loop structure is
more consistent with S4E sequence conservation compared to the

GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAAAAUAGUCGCAAACGACGAAAACUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUAGGACGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGGAAGCCCUGCCUGGGGUUGAAGCGUUAAAACUUAAUCAGGCUAGUUUGUUAGUGGCGUGUCCGUCCGCAGCUGGCAAGCGAAUGUAAAGACUGACUAAGCAUGUAGUACCGAGGAUGUAGGAAUUUCGGACGCGGGUUCAACUCCCGCCAGCUCCACCA
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100 200 300
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True positive

False negative

False positive

– DMS
– PAIR-MaP

ppv = 63%
sens = 58%

+ DMS
– PAIR-MaP

ppv = 94%
sens = 91%

+ DMS
+ PAIR-MaP

ppv = 99%
sens = 97%
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tmRNA (in-cell)
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Fig. 4. PAIR-MaP enables accurate modeling of tmRNA structure in cells.
Minimum free-energy structure models obtained without experimental data
(Top), guided by nucleotide-specific DMS reactivity restraints (Middle), and
guided by DMS reactivity restraints and PAIR-MaP restraints (Bottom). True-
positive (gray), false-positive (purple), and false-negative (green) predictions
and overall ppv and sens are shown for each model. The 4 correctly modeled
PKs are labeled.
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previously proposed double PK and uniquely explains the impact of
Shine–Dalgarno sequence mutations on S4 binding (Fig. 6 B and C
and SI Appendix, Supporting Discussion and Fig. S6) (35). There
is also potential structural homology between the kissing loop
structure and the S4 binding site on the 16S rRNA (SI Appendix,
Fig. S6). Thus, our data support a model in which S4 binds a kissing
loop structure, which stabilizes the H3 stem and thereby prevents
translation initiation on rpsM (SI Appendix, Supporting Discussion).
We next examined the S2-binding element (S2E) located in

the 5′-UTR of the E. coli rpsB-tsf transcript (36). Phylogenetic
analyses have predicted that the S2E folds into a PK (33), but the
PK interaction has not been directly confirmed and prior
SHAPE experiments were ambiguous (37). Significantly, while
no PK is observed under cell-free conditions, in-cell PAIR-MaP
experiments reveal multiple minor signals consistent with S2-
induced stabilization of the PK in cells (Fig. 6 D and E). Our
data also reveal a previously undetected “P1” helix (Fig. 6 D and
E). The functional importance of P1 is supported by prior ge-
netic studies, which observed that deletion of P1-involved se-
quences abrogate S2 regulation (Fig. 6E) (36). The discovery of
the P1 helix also illuminates how the S2 protein recognizes the
S2E RNA. Whereas it was previously thought that the S2E
lacked homology to the 16S rRNA binding site of S2 (33),
identification of P1 makes it clear that S2 recognizes a common
architecture in both the S2E and 16S rRNA (Fig. 6F). In-
terestingly, this architecture only appears to be conserved
among enterobacterial S2Es, with S2Es from more distant
bacterial species lacking the capacity to form P1 and thus po-
tentially using a different mode of S2 recognition (SI Appendix,
Supporting Methods). Because P1 sequences show little vari-
ability within the enterobacterial clade, this structural element
has gone undiscovered by de novo covariation analysis. Moreover,
the moderate DMS reactivities for both P1 and the PK indicate
that these elements are only partially formed in cells (Fig. 6E),
making them challenging to discover via traditional chemical
probing strategies. Thus, in-cell PAIR-MaP analysis reveals

divergent, yet functionally important, structural features of the
E. coli S2E RNA missed by conventional analyses.

Discussion
Chemical probing is a central tool in RNA structural biology,
providing nucleotide-resolution insight into local RNA structure
in an adaptable, experimentally concise manner. However, the
inability to measure base-pairing interactions directly had remained
a fundamental limitation of these approaches. We show that single-
molecule correlated chemical probing coupled with PAIR-MaP
analysis resolves this limitation, allowing direct visualization of RNA
duplexes in living bacterial and human cells. The correlation data
obtained from PAIR-MaP experiments are typically sufficiently
dense to define global RNA architecture, providing direct evidence
of complex structural features such as PKs and long-range pairing.
Equally valuable, PAIR-MaP data provide insight into the
complexity of the RNA structural landscape, revealing alter-
native and unstable pairing interactions that are difficult to
measure via conventional means. Finally, PAIR-MaP data can be
used in combination with automated computational modeling strat-
egies to derive complete, accurate models of RNA structure as
it exists in cells.
PAIR-MaP offers significant advantages compared to alter-

native in vivo duplex-detection strategies. Most importantly,
PAIR-MaP resolves base pairs at nucleotide resolution with
superior ppv (>90%) and sens (∼45%) (Table 1). PAIR-MaP
is straightforward to implement; the innovation of the strategy
lies in improved conditions enabling pan-RNA modification
by DMS, the MaP readout, and algorithmic interpretation of
the single-molecule correlated chemical probing signal. DMS-
MaP experiments are already broadly used throughout the
RNA community, and focused sequencing libraries of even rare
RNAs are easily prepared using PCR amplification without the
need to enrich for or pull down target RNAs (38). Finally,
a single PAIR-MaP experiment reports both local reactivity
and pairwise interaction information, obviating the need for
multiple experiments.
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PAIR-MaP does have several limitations. Due to high se-
quencing read-depth requirements, PAIR-MaP is poorly suited for
transcriptome-wide profiling. In contrast to cross-linking and liga-
tion strategies, PAIR-MaP requires duplexes to be self-contained
within a contiguous sequencing read, currently ∼500 nt, and cannot
detect intermolecular duplexes. PAIR-MaP also cannot detect
duplexes in a few exceptionally stable, protein-coated RNP com-
plexes such as the ribosome and RNase P. More generally, PAIR-
MaP correlations are innately “nonnative” measurements—in a
sense, PAIR-MaP measures DMS-induced sequential unfolding of
RNA molecules. The progressive accumulation of DMS adducts
could promote formation of misfolded states, or shift the native
equilibrium of dynamic RNAs. However, because of the stochas-
ticity of the DMS modification process, every molecule is perturbed
in a unique and noncoherent manner, and hence perturbations
should average out over a population of molecules. Our extensive
benchmarking supports that DMS-induced perturbations do not
significantly impact PAIR-MaP accuracy.

Overall, our study highlights the extensive potential of PAIR-
MaP for characterizing RNA structure and dynamics and ul-
timately for understanding biology. PAIR-MaP allowed us to
determine the in-cell structure of human RMRP, revealing a
universally conserved and disease-linked RNA helix that has
been missed by prior phylogenetic and chemical probing analyses.
Our analysis of bacterial mRNA regulatory motifs further uncov-
ered dynamic helices that are essential for understanding protein-
binding and regulatory function, but which are only appreciably
formed in cells and are invisible to lower-resolution methods. In
recent years, high-throughput chemical probing methodologies
have helped open up a new frontier of in-cell structure–function
studies in complex RNAs such as mRNAs and long ncRNAs (2,
39). However, the structural data obtained from many of these
studies remain difficult to evaluate, particularly for evolutionarily
divergent long ncRNAs (40). We anticipate that PAIR-MaP will
broadly facilitate the next generation of high-resolution, in-cell
structural insights into these and many other RNAs that con-
tinue to challenge conventional characterization.
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to the rpsM-specific transcription start site consistent with prior studies; however, our data are specific to the intergenic form of the rpsM 5′-UTR transcribed from
upstream promoters. CDS, coding sequence. (B) In-cell structure of the S4E. The kissing loop interaction (KL; purple) is not predicted by minimum free-energy
structure modeling but is clearly supported by PAIR-MaP correlations. The SD mutation, which disrupts H3 and abrogates S4 binding (35), is labeled. (C) Revised
consensus structure of the S4E across Gammaproteobacteria. Covariation and base-pairing conservation were assessed using R-scape and R2R, respectively (40, 44).
(D) Cell-free structure of the E. coli rpsB 5′-UTR containing the S2E. The previously undetected P1 interaction (purple) is predicted by DMS+PAIR-MaPminimum free-
energy modeling. (E) In-cell structure of the S2E. The P1 and PK interactions (in purple and green, respectively) are not predicted by minimum free-energy modeling
but are clearly supported by PAIR-MaP correlations. A deletion that disrupts P1 and abrogates S2 regulation is labeled (36). (F) Homology between the S2E (Left) and
the S2 binding site in the 16S rRNA (Middle), and the crystal structure of the S2 ribosome binding site (Right; Protein Data Bank ID code 4YBB). P1 and PK nucleotides
are highlighted in purple and green, respectively, and homologous nucleotides are highlighted in orange. The key for PAIR-MaP plots is provided in Fig. 2.

Mustoe et al. PNAS | December 3, 2019 | vol. 116 | no. 49 | 24581

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 C

B
# 

39
38

 D
A

V
IS

 L
IB

R
A

R
Y

 o
n 

D
ec

em
be

r 
21

, 2
01

9 



Materials and Methods
Experimental Methods. DMS probing experiments were performed on total
RNA gently extracted (8, 41) from E. coli K-12 MG1655 and human Jurkat cells
(cell-free) and on intact cells (in-cell) buffered with 200 or 300 mM bicine (pH
8.0), 200 mM potassium acetate (pH 8.0), and 5 mM MgCl2 at 37 °C. In vitro
transcribed adenine riboswitch RNA was probed at 30 °C in the absence or
presence of 100 μM adenine ligand in 300 mM bicine (pH 8.0), 100 mM NaCl,
and 5 mMMgCl2. Unmodified control samples were also obtained for all RNAs.
MaP reverse transcription was used to convert DMS adducts into mutations in
complementary DNA and is compatible with nearly all protocols for creating
libraries for massively parallel sequencing (14, 38). Here, sequencing libraries
were prepared by both randomly primed Nextera (E. coli 16S and 23S rRNA)
and gene-specific PCR (other RNAs) (38) and sequenced on an Illumina MiSeq
instrument (SI Appendix, Tables S4 and S5). ShapeMapper was used to align
and parse mutations from DMS-MaP sequencing data (17).

The PAIR-MaP Algorithm. PAIR-MaP analysis begins by computing the corre-
lation between joint mutations of all pairs of 3-nt windows in the DMS-
modified sample (SI Appendix, Fig. S1). Nucleotide windows separated by
8 or fewer nucleotides, having insufficient read depth or low modification
rates in the modified sample, or exhibiting high mutation rates or significant
correlations in the unmodified background control dataset are excluded.
Correlation is quantified using the average product corrected G test ðGAPC

ij Þ
(40, 42), and a pair of nucleotide windows is considered significantly correlated
if GAPC

ij > 20, corresponding to P < 10−5. High-confidence base-pairing signals

are then identified from the set of significantly correlated windows by filtering

by sequence complementarity, correlation strength, and reactivity. Specifically,
correlated windows must be able to form 3 Watson–Crick or G–U pairs, the
windows must be positively correlated, GAPC

ij must be greater than 2 SDs above

the mean, and both windows must have mean normalized DMS reactiv-
ities <0.2 (for principal correlations) or <0.5 (for minor correlations). Comple-
mentary correlations that are unambiguously the strongest correlation for
each interacting nucleotide window, with each window passing the stricter
0.2 reactivity cutoff, are classified as principal. The remaining set of comple-
mentary correlations are classified as minor. PAIR-MaP analysis can only be
performed if RNAs are modified by DMS at a sufficiently high level; datasets
exhibiting median comodification rates <0.0005 are automatically disqualified
(for example, the in-cell rRNA datasets). In PAIR-MaP plots, principal and minor
correlations are colored with varying intensity based on Z-score significance on
a scale from Z = 2 to Z ≥ 6. PAIR-MaP analysis code is available as part of the
RingMapper/PairMapper software suite (v1.0), available for download at
https://github.com/Weeks-UNC/RingMapper.

Detaileddescriptions of experimentalmethods, the PAIR-MaP algorithm,DMS
reactivity normalization, structure modeling, sensitivity and specificity analysis,
and covariation analysis is provided in SI Appendix, Supporting Methods.
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