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base pairs directly detected by PAIR-MaP. This integrated strategy
is less accurate when modeling tmRNA under cell-free conditions
due to the effects of several nonnative PAIR-MaP correlations
that likely reflect misfolding in noncellular contexts (Table 1 and
SI Appendix, Fig. S2). However, for all other RNAs and conditions,
this integrated strategy yields equivalent or higher-accuracy struc-
ture models (Table 1 and SI Appendix, Fig. S2). Notably, when using
in-cell data, this integrated strategy recovers tmRNA structure with
near-perfect accuracy, including all 4 PKs (ppv = 99% and sens =
97%; Fig. 4). It is worth emphasizing that tmRNA, with its mixture
of long-range interactions and multiple PKs, is one of the most
difficult structure modeling challenges of which we are aware. Thus,
while DMS-directed structure modeling provides excellent accu-
racy, integrated modeling with PAIR-MaP data can provide notable
improvement for RNAs with particularly challenging structures.

Overall, the ~90% accuracy of DMS+PAIR-MaP-directed
structure modeling is comparable to best-in-class SHAPE-based
strategies (SI Appendix, Table S2) (7). It is particularly striking
that, using PAIR-MaP, accuracy remains similar or increases in cells
for all RNAs. DMS reactivity has been widely used to model RNA
structure de novo. To date, the accuracy of DMS-directed structure
modeling has been examined only for short RNAs (27). This work
provides quantitative validation that DMS can be used to guide
accurate structure modeling of long, complex RNAs. Furthermore,
this analysis provides important systematic validation that de novo
structure modeling can be performed accurately in cells, which has
not been previously validated for any reagent.

Identification of an Unnoticed Conserved Helix in RMRP. During
benchmarking of PAIR-MaP on human RMRP it became clear
that the accepted RMRP structure was incomplete. RMRP is an
essential ncRNA, conserved across eukaryotes, that is involved in
rRNA processing and other potential functions (28). RMRP is
ancestrally related to the eukaryotic RNase P RNA, and phylo-
genetic analyses have shown that RMRP and RNase P share
similar conserved structures (29, 30). As noted above, RMRP
clearly misfolds under cell-free conditions (SI Appendix, Fig. S3).
This misfolding is resolved in cells, with PAIR-MaP correlations
and structure modeling showing that RMRP forms the accepted
base-paired structure with one notable exception. Strikingly, PAIR-
MaP revealed the presence of an additional “P7” helix that closes
the catalytic core domain of RMRP (Fig. 54). The P7 helix is a
conserved architectural feature of RNase P but, to date, has not
been observed in RMRP (30). We used this updated structure
model to realign the published RMRP multiple-sequence align-
ment (31), which newly reveals that the P7 extension is conserved
from yeast to humans (Fig. 5B). Furthermore, single-nucleotide
mutations or insertions within P7 are pathogenic in humans (Fig.
5B) (32). Thus, in-cell PAIR-MaP enabled discovery of a func-
tionally important helix missed by previous analyses and provides
insights into the structural basis of human disease.

Mechanistic Insights into Bacterial mRNA Autoregulatory Elements.
We next applied PAIR-MaP to examine the structures of RNAs
that have proven challenging to characterize via traditional
approaches. We focused on two E. coli 5’ untranslated regions
(5'-UTRs) that contain regulatory elements that bind ribo-
somal proteins (r-proteins) to inhibit translation of downstream
genes, forming a feedback loop that ensures balanced synthesis of
r-proteins and rRNA (33). These 5'-UTRs are good exemplars of
the functional relationships between RNA structure and protein
binding that govern regulation of many RNAs in vivo.

We first applied PAIR-MaP to characterize the S4-binding
element (S4E) located upstream of the E. coli rpsM gene (also
termed the a-operon). Prior studies have suggested that S4 induces
a conformational change in the S4E, stabilizing a double PK
structure that inhibits translation of rpsM and downstream genes
(34, 35). However, the proposed double PK is not fully consistent
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Fig. 4. PAIR-MaP enables accurate modeling of tmRNA structure in cells.
Minimum free-energy structure models obtained without experimental data
(Top), guided by nucleotide-specific DMS reactivity restraints (Middle), and
guided by DMS reactivity restraints and PAIR-MaP restraints (Bottom). True-
positive (gray), false-positive (purple), and false-negative (green) predictions
and overall ppv and sens are shown for each model. The 4 correctly modeled
PKs are labeled.

with biochemical and genetic data, and the structure of the S4E in
the absence of the S4 protein is unknown (SI Appendix, Supporting
Discussion and Fig. S6). Cell-free PAIR-MaP data show that the
rpsM 5'-UTR and coding sequence fold into 4 stem-loop helices
(Fig. 64). Of particular note, we identify an unstable helix (H3)
formed between the Shine-Dalgarno sequence and the rpsM
coding sequence. Strikingly, in-cell experiments reveal stabilization
of H3 as well as appearance of signals indicating loop-loop pairing
between H2 and H3, consistent with S4 protein binding and stabilizing
a kissing loop structure in cells (Fig. 6B). This kissing loop structure is
more consistent with S4E sequence conservation compared to the
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Fig. 5. PAIR-MaP identifies a previously undetected conserved helix in RNase MRP. (4) Comparison between the in-cell DMS+PAIR-MaP structure model and prior
covariation-based structure model (30). Purple, DMS+PAIR-MaP-predicted pairs not present in the prior covariation model. Green, accepted pairs missed by the
DMS+PAIR-MaP model. Gray, pairs present in both models. DMS reactivities and PAIR-MaP correlations are shown at bottom following the same scheme as in Fig.
2. The PAIR-MaP correlation supporting the P7 interaction is indicated by the arrow. (B) Realigned consensus structure of RMRP reveals significant covariation for
the P7 helix (933 sequences, from yeast to human). Base pairs supported by significant covariation [green, assessed using R-scape (40)] or sequence conservation
[red, assessed using R2R (44)] are indicated. Human disease-associated mutations in the P7 helix are indicated by orange arrows (32).

previously proposed double PK and uniquely explains the impact of
Shine-Dalgarno sequence mutations on S4 binding (Fig. 6 B and C
and SI Appendix, Supporting Discussion and Fig. S6) (35). There
is also potential structural homology between the kissing loop
structure and the S4 binding site on the 16S rRNA (SI Appendix,
Fig. S6). Thus, our data support a model in which S4 binds a kissing
loop structure, which stabilizes the H3 stem and thereby prevents
translation initiation on rpsM (SI Appendix, Supporting Discussion).

We next examined the S2-binding element (S2E) located in
the 5’-UTR of the E. coli rpsB-tsf transcript (36). Phylogenetic
analyses have predicted that the S2E folds into a PK (33), but the
PK interaction has not been directly confirmed and prior
SHAPE experiments were ambiguous (37). Significantly, while
no PK is observed under cell-free conditions, in-cell PAIR-MaP
experiments reveal multiple minor signals consistent with S2-
induced stabilization of the PK in cells (Fig. 6 D and E). Our
data also reveal a previously undetected “P1” helix (Fig. 6 D and
E). The functional importance of P1 is supported by prior ge-
netic studies, which observed that deletion of Pl-involved se-
quences abrogate S2 regulation (Fig. 6E) (36). The discovery of
the P1 helix also illuminates how the S2 protein recognizes the
S2E RNA. Whereas it was previously thought that the S2E
lacked homology to the 16S rRNA binding site of S2 (33),
identification of P1 makes it clear that S2 recognizes a common
architecture in both the S2E and 16S rRNA (Fig. 6F). In-
terestingly, this architecture only appears to be conserved
among enterobacterial S2Es, with S2Es from more distant
bacterial species lacking the capacity to form P1 and thus po-
tentially using a different mode of S2 recognition (S Appendix,
Supporting Methods). Because P1 sequences show little vari-
ability within the enterobacterial clade, this structural element
has gone undiscovered by de novo covariation analysis. Moreover,
the moderate DMS reactivities for both P1 and the PK indicate
that these elements are only partially formed in cells (Fig. 6E),
making them challenging to discover via traditional chemical
probing strategies. Thus, in-cell PAIR-MaP analysis reveals
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divergent, yet functionally important, structural features of the
E. coli S2E RNA missed by conventional analyses.

Discussion

Chemical probing is a central tool in RNA structural biology,
providing nucleotide-resolution insight into local RNA structure
in an adaptable, experimentally concise manner. However, the
inability to measure base-pairing interactions directly had remained
a fundamental limitation of these approaches. We show that single-
molecule correlated chemical probing coupled with PAIR-MaP
analysis resolves this limitation, allowing direct visualization of RNA
duplexes in living bacterial and human cells. The correlation data
obtained from PAIR-MaP experiments are typically sufficiently
dense to define global RNA architecture, providing direct evidence
of complex structural features such as PKs and long-range pairing.
Equally valuable, PAIR-MaP data provide insight into the
complexity of the RNA structural landscape, revealing alter-
native and unstable pairing interactions that are difficult to
measure via conventional means. Finally, PAIR-MaP data can be
used in combination with automated computational modeling strat-
egies to derive complete, accurate models of RNA structure as
it exists in cells.

PAIR-MaP offers significant advantages compared to alter-
native in vivo duplex-detection strategies. Most importantly,
PAIR-MaP resolves base pairs at nucleotide resolution with
superior ppv (>90%) and sens (~45%) (Table 1). PAIR-MaP
is straightforward to implement; the innovation of the strategy
lies in improved conditions enabling pan-RNA modification
by DMS, the MaP readout, and algorithmic interpretation of
the single-molecule correlated chemical probing signal. DMS-
MaP experiments are already broadly used throughout the
RNA community, and focused sequencing libraries of even rare
RNAs are easily prepared using PCR amplification without the
need to enrich for or pull down target RNAs (38). Finally,
a single PAIR-MaP experiment reports both local reactivity
and pairwise interaction information, obviating the need for
multiple experiments.
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Fig. 6. Structural features of r-protein regulatory elements. (A) Cell-free structure of the E. coli rpsM 5'-UTR containing the S4E. The sequence is numbered relative
to the rpsM-specific transcription start site consistent with prior studies; however, our data are specific to the intergenic form of the rpsM 5'-UTR transcribed from
upstream promoters. CDS, coding sequence. (B) In-cell structure of the S4E. The kissing loop interaction (KL; purple) is not predicted by minimum free-energy
structure modeling but is clearly supported by PAIR-MaP correlations. The SD mutation, which disrupts H3 and abrogates S4 binding (35), is labeled. (C) Revised
consensus structure of the S4E across Gammaproteobacteria. Covariation and base-pairing conservation were assessed using R-scape and R2R, respectively (40, 44).
(D) Cell-free structure of the E. coli rpsB 5’-UTR containing the S2E. The previously undetected P1 interaction (purple) is predicted by DMS+PAIR-MaP minimum free-
energy modeling. (E) In-cell structure of the S2E. The P1 and PK interactions (in purple and green, respectively) are not predicted by minimum free-energy modeling
but are clearly supported by PAIR-MaP correlations. A deletion that disrupts P1 and abrogates S2 regulation is labeled (36). (F) Homology between the S2E (Left) and
the S2 binding site in the 16S rRNA (Middle), and the crystal structure of the S2 ribosome binding site (Right; Protein Data Bank ID code 4YBB). P1 and PK nucleotides
are highlighted in purple and green, respectively, and homologous nucleotides are highlighted in orange. The key for PAIR-MaP plots is provided in Fig. 2.

PAIR-MaP does have several limitations. Due to high se-
quencing read-depth requirements, PAIR-MaP is poorly suited for
transcriptome-wide profiling. In contrast to cross-linking and liga-
tion strategies, PAIR-MaP requires duplexes to be self-contained
within a contiguous sequencing read, currently ~500 nt, and cannot
detect intermolecular duplexes. PAIR-MaP also cannot detect
duplexes in a few exceptionally stable, protein-coated RNP com-
plexes such as the ribosome and RNase P. More generally, PAIR-
MaP correlations are innately “nonnative” measurements—in a
sense, PAIR-MaP measures DMS-induced sequential unfolding of
RNA molecules. The progressive accumulation of DMS adducts
could promote formation of misfolded states, or shift the native
equilibrium of dynamic RNAs. However, because of the stochas-
ticity of the DMS modification process, every molecule is perturbed
in a unique and noncoherent manner, and hence perturbations
should average out over a population of molecules. Our extensive
benchmarking supports that DMS-induced perturbations do not
significantly impact PAIR-MaP accuracy.

Mustoe et al.

Overall, our study highlights the extensive potential of PAIR-
MaP for characterizing RNA structure and dynamics and ul-
timately for understanding biology. PAIR-MaP allowed us to
determine the in-cell structure of human RMRP, revealing a
universally conserved and disease-linked RNA helix that has
been missed by prior phylogenetic and chemical probing analyses.
Our analysis of bacterial mRNA regulatory motifs further uncov-
ered dynamic helices that are essential for understanding protein-
binding and regulatory function, but which are only appreciably
formed in cells and are invisible to lower-resolution methods. In
recent years, high-throughput chemical probing methodologies
have helped open up a new frontier of in-cell structure—function
studies in complex RNAs such as mRNAs and long ncRNAs (2,
39). However, the structural data obtained from many of these
studies remain difficult to evaluate, particularly for evolutionarily
divergent long ncRNAs (40). We anticipate that PAIR-MaP will
broadly facilitate the next generation of high-resolution, in-cell
structural insights into these and many other RNAs that con-
tinue to challenge conventional characterization.
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Materials and Methods

Experimental Methods. DMS probing experiments were performed on total
RNA gently extracted (8, 41) from E. coli K-12 MG 1655 and human Jurkat cells
(cell-free) and on intact cells (in-cell) buffered with 200 or 300 mM bicine (pH
8.0), 200 mM potassium acetate (pH 8.0), and 5 mM MgCl, at 37 °C. In vitro
transcribed adenine riboswitch RNA was probed at 30 °C in the absence or
presence of 100 pM adenine ligand in 300 mM bicine (pH 8.0), 100 mM Nadl,
and 5 mM MgCl,. Unmodified control samples were also obtained for all RNAs.
MaP reverse transcription was used to convert DMS adducts into mutations in
complementary DNA and is compatible with nearly all protocols for creating
libraries for massively parallel sequencing (14, 38). Here, sequencing libraries
were prepared by both randomly primed Nextera (E. coli 16S and 23S rRNA)
and gene-specific PCR (other RNAs) (38) and sequenced on an lllumina MiSeq
instrument (S/ Appendix, Tables S4 and S5). ShapeMapper was used to align
and parse mutations from DMS-MaP sequencing data (17).

The PAIR-MaP Algorithm. PAIR-MaP analysis begins by computing the corre-
lation between joint mutations of all pairs of 3-nt windows in the DMS-
modified sample (S/ Appendix, Fig. S1). Nucleotide windows separated by
8 or fewer nucleotides, having insufficient read depth or low modification
rates in the modified sample, or exhibiting high mutation rates or significant
correlations in the unmodified background control dataset are excluded.
Correlation is quantified using the average product corrected G test (G{J'-‘PC)
(40, 42), and a pair of nucleotide windows is considered significantly correlated
if Gf}”‘: > 20, corresponding to P < 10>, High-confidence base-pairing signals
are then identified from the set of significantly correlated windows by filtering

1. T.R. Cech, J. A. Steitz, The noncoding RNA revolution-trashing old rules to forge new
ones. Cell 157, 77-94 (2014).

2. A. M. Mustoe, M. Corley, A. Laederach, K. M. Weeks, Messenger RNA structure reg-
ulates translation initiation: A mechanism exploited from bacteria to humans. Bio-
chemistry 57, 3537-3539 (2018).

. E. A. Dethoff, J. Chugh, A. M. Mustoe, H. M. Al-Hashimi, Functional complexity and
regulation through RNA dynamics. Nature 482, 322-330 (2012).

4. C. Ehresmann et al., Probing the structure of RNAs in solution. Nucleic Acids Res. 15,

9109-9128 (1987).
5. K. M. Weeks, Advances in RNA structure analysis by chemical probing. Curr. Opin.
Struct. Biol. 20, 295-304 (2010).

6. K. A. Leamy, S. M. Assmann, D. H. Mathews, P. C. Bevilacqua, Bridging the gap be-
tween in vitro and in vivo RNA folding. Q. Rev. Biophys. 49, e10 (2016).

. N. A. Siegfried, S. Busan, G. M. Rice, J. A. E. Nelson, K. M. Weeks, RNA motif discovery
by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959-965 (2014).
8. K. E. Deigan, T. W. Li, D. H. Mathews, K. M. Weeks, Accurate SHAPE-directed RNA

structure determination. Proc. Natl. Acad. Sci. U.S.A. 106, 97-102 (2009).
9. C. E. Hajdin et al., Accurate SHAPE-directed RNA secondary structure modeling, in-
cluding pseudoknots. Proc. Natl. Acad. Sci. U.S.A. 110, 5498-5503 (2013).

10. C.Y. Cheng, W. Kladwang, J. D. Yesselman, R. Das, RNA structure inference through
chemical mapping after accidental or intentional mutations. Proc. Natl. Acad. Sci.
U.S.A. 114, 9876-9881 (2017).

11. C. A. Weidmann, A. M. Mustoe, K. M. Weeks, Direct duplex detection: An emerging
tool in the RNA structure analysis toolbox. Trends Biochem. Sci. 41, 734-736 (2016).

12. B. R. Graveley, RNA matchmaking: Finding cellular pairing partners. Mol. Cell 63, 186—
189 (2016).

13. O. Ziv et al., COMRADES determines in vivo RNA structures and interactions. Nat.
Methods 15, 785-788 (2018).

14. P. J. Homan et al., Single-molecule correlated chemical probing of RNA. Proc. Natl.
Acad. Sci. U.S.A. 111, 13858-13863 (2014).

15. A. Krokhotin, A. M. Mustoe, K. M. Weeks, N. V. Dokholyan, Direct identification of
base-paired RNA nucleotides by correlated chemical probing. RNA 23, 6-13 (2017).

16. P. Thaplyal, P. C. Bevilacqua, Experimental approaches for measuring pKa’s in RNA
and DNA. Methods Enzymol. 549, 189-219 (2014).

17. S. Busan, K. M. Weeks, Accurate detection of chemical modifications in RNA by mu-
tational profiling (MaP) with ShapeMapper 2. RNA 24, 143-148 (2018).

18. M. Zubradt et al., DMS-MaPseq for genome-wide or targeted RNA structure probing
in vivo. Nat. Methods 14, 75-82 (2017).

19. A. N. Sexton, P. Y. Wang, M. Rutenberg-Schoenberg, M. D. Simon, Interpreting re-
verse transcriptase termination and mutation events for greater insight into the
chemical probing of RNA. Biochemistry 56, 4713-4721 (2017).

20. A. Reining et al., Three-state mechanism couples ligand and temperature sensing in

riboswitches. Nature 499, 355-359 (2013).

. S. Tian, W. Kladwang, R. Das, Allosteric mechanism of the V. vulnificus adenine ri-
boswitch resolved by four-dimensional chemical mapping. eLife 7, €29602 (2018).

22. S. Tian, P. Cordero, W. Kladwang, R. Das, High-throughput mutate-map-rescue
evaluates SHAPE-directed RNA structure and uncovers excited states. RNA 20, 1815-
1826 (2014).

23. P. Cordero, R. Das, Rich RNA structure landscapes revealed by mutate-and-map
analysis. PLoS Comput. Biol. 11, €1004473 (2015).

w

~

2

=

24582 | www.pnas.org/cgi/doi/10.1073/pnas.1905491116

by sequence complementarity, correlation strength, and reactivity. Specifically,
correlated windows must be able to form 3 Watson—Crick or G-U pairs, the
windows must be positively correlated, Gf}”c must be greater than 2 SDs above

the mean, and both windows must have mean normalized DMS reactiv-
ities <0.2 (for principal correlations) or <0.5 (for minor correlations). Comple-
mentary correlations that are unambiguously the strongest correlation for
each interacting nucleotide window, with each window passing the stricter
0.2 reactivity cutoff, are classified as principal. The remaining set of comple-
mentary correlations are classified as minor. PAIR-MaP analysis can only be
performed if RNAs are modified by DMS at a sufficiently high level; datasets
exhibiting median comodification rates <0.0005 are automatically disqualified
(for example, the in-cell rRNA datasets). In PAIR-MaP plots, principal and minor
correlations are colored with varying intensity based on Z-score significance on
a scale from Z = 2 to Z > 6. PAIR-MaP analysis code is available as part of the
RingMapper/PairMapper software suite (v1.0), available for download at
https://github.com/\Weeks-UNC/RingMapper.

Detailed descriptions of experimental methods, the PAIR-MaP algorithm, DMS
reactivity normalization, structure modeling, sensitivity and specificity analysis,
and covariation analysis is provided in S/ Appendix, Supporting Methods.

ACKNOWLEDGMENTS. We thank S. Busan for helpful discussions and ongo-
ing development of the ShapeMapper software, C. Weidmann for helpful
discussions, and the K.M.W. laboratory for testing and feedback on PAIR-MaP.
We thank D. Mathews (University of Rochester) for sharing access to the
RNAstructure source code. This work was supported by the Arnold and Mabel
Beckman Foundation (postdoctoral fellowship to A.M.M.) and the National
Institutes of Health (R35 GM122532 to K.M.W.).

24. L. E. Rogler et al., Small RNAs derived from IncRNA RNase MRP have gene-silencing
activity relevant to human cartilage-hair hypoplasia. Hum. Mol. Genet. 23, 368-382
(2014).

25. J. L. McGinnis et al., In-cell SHAPE reveals that free 30S ribosome subunits are in the
inactive state. Proc. Natl. Acad. Sci. U.S.A. 112, 2425-2430 (2015).

26. J. S. Reuter, D. H. Mathews, RNAstructure: Software for RNA secondary structure
prediction and analysis. BMC Bioinformatics 11, 129 (2010).

27. P. Cordero, W. Kladwang, C. C. VanLang, R. Das, Quantitative dimethyl sulfate
mapping for automated RNA secondary structure inference. Biochemistry 51, 7037-
7039 (2012).

28. K. C. Goldfarb, T. R. Cech, Targeted CRISPR disruption reveals a role for RNase MRP
RNA in human preribosomal RNA processing. Genes Dev. 31, 59-71 (2017).

29. X. Li, D. N. Frank, N. Pace, J. M. Zengel, L. Lindahl, Phylogenetic analysis of the
structure of RNase MRP RNA in yeasts. RNA 8, 740-751 (2002).

30. M. Davila Lépez, M. A. Rosenblad, T. Samuelsson, Conserved and variable domains of
RNase MRP RNA. RNA Biol. 6, 208-220 (2009).

31. 1. Kalvari et al., Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA
families. Nucleic Acids Res. 46, D335-D342 (2018).

32. S. Mattijssen, T. J. M. Welting, G. J. M. Pruijn, RNase MRP and disease. Wiley Interdiscip.
Rev. RNA 1, 102-116 (2010).

33. Y. Fu, K. Deiorio-Haggar, J. Anthony, M. M. Meyer, Most RNAs regulating ribosomal
protein biosynthesis in Escherichia coli are narrowly distributed to Gammaproteo-
bacteria. Nucleic Acids Res. 41, 3491-3503 (2013).

34. C. K. Tang, D. E. Draper, Unusual mRNA pseudoknot structure is recognized by a
protein translational repressor. Cell 57, 531-536 (1989).

35. P. J. Schlax, K. A. Xavier, T. C. Gluick, D. E. Draper, Translational repression of the
Escherichia coli alpha operon mRNA: Importance of an mRNA conformational switch
and a ternary entrapment complex. J. Biol. Chem. 276, 38494-38501 (2001).

36. L. V. Aseev, A. A. Levandovskaya, L. S. Tchufistova, N. V. Scaptsova, I. V. Boni, A new
regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf
expression in vivo. RNA 14, 1882-1894 (2008).

37. A. M. Mustoe et al., Pervasive regulatory functions of mRNA structure revealed by
high-resolution SHAPE probing. Cell 173, 181-195.e18 (2018).

38. M. J. Smola, G. M. Rice, S. Busan, N. A. Siegfried, K. M. Weeks, Selective 2'-hydroxyl
acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for
direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643-1669
(2015).

39. E. J. Strobel, A. M. Yu, J. B. Lucks, High-throughput determination of RNA structures.
Nat. Rev. Genet. 19, 615-634 (2018).

40. E. Rivas, J. Clements, S. R. Eddy, A statistical test for conserved RNA structure shows
lack of evidence for structure in IncRNAs. Nat. Methods 14, 45-48 (2017).

41. M. J. Smola, J. M. Calabrese, K. M. Weeks, Detection of RNA—-protein interactions in
living cells with SHAPE. Biochemistry 54, 6867-6875 (2015).

42. S. D. Dunn, L. M. Wahl, G. B. Gloor, Mutual information without the influence of phy-
logeny or entropy dramatically improves residue contact prediction. Bioinformatics 24,
333-340 (2008).

43. A.Serganov et al., Structural basis for discriminative regulation of gene expression by
adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729-1741 (2004).

44. Z. Weinberg, R. R. Breaker, R2R-software to speed the depiction of aesthetic con-
sensus RNA secondary structures. BMC Bioinformatics 12, 3 (2011).

Mustoe et al.


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905491116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905491116/-/DCSupplemental
https://github.com/Weeks-UNC/RingMapper
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905491116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1905491116

