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The human genome expresses thousands of lncRNAs, several 
of which regulate fundamental cellular processes. Still, the 
overwhelming majority of lncRNAs lack characterized func-

tion and it is likely that physiologically important lncRNAs remain 
to be identified. Moreover, the mechanisms through which most 
lncRNAs act are not clear, limiting our understanding of the biology 
that they govern in cells1–12.

A major roadblock to progress remains the inability to detect 
recurrent relationships between lncRNA sequence and function. An 
understanding of analogous relationships in proteins has enabled 
the classification of protein families, functional domains, and mech-
anisms that, in turn, have led to discoveries that have improved the 
diagnosis and treatment of disease13,14. However, with rare excep-
tions, the functions of lncRNAs are unrecognizable from compu-
tational analyses and must be determined empirically10–12,15–20. As a 
result, classification of function in one lncRNA often provides no 
information about function in others. For example, the Xist and 
Kcnq1ot1 lncRNAs both repress gene expression in cis (mean-
ing on the same chromosome from which they were transcribed), 
and both require the Polycomb Repressive Complex to do so7. Yet, 
despite similarities in mechanism, the two lncRNAs share almost 
no sequence similarity by standard metrics. Using two common 
sequence alignment algorithms, nhmmer21 and Stretcher22, Xist and 
Kcnq1ot1 appear just as similar to each other as they do to randomly 
generated sequences (Supplementary Fig. 1). Thus, comparing the 
sequence of Kcnq1ot1 to a known cis-repressive lncRNA (Xist) pro-
vides no indication that Kcnq1ot1 is also a cis-repressive lncRNA. 

This problem extends to the thousands of lncRNAs that lack char-
acterized functions.

Results
K-mer-based quantitation as a means to compare lncRNA 
sequence content. We hypothesized that lncRNAs with shared 
functions should harbor sequence similarities that confer shared 
functions, even if conventional alignment algorithms do not detect 
the similarity. Our rationale follows. First, most lncRNAs probably 
have no catalytic activity, suggesting that the proteins they bind 
in cells define their function. Second, proteins often bind RNA 
through short motifs, or k-mers, that are between three and eight 
bases in length, where ‘k’ specifies the length of the motif23,24. Third, 
the mere presence of a set of protein binding-motifs may be more 
important than their relative positioning within an lncRNA, mean-
ing that functionally related lncRNAs could harbor related motif 
contents and still lack linear sequence similarity.

To test our hypothesis, we developed a method of sequence com-
parison, called SEEKR (sequence evaluation from k-mer representa-
tion). In SEEKR, all k-mers of a specified length k (that is, k =  4, 5, or 
6, etc.) are counted in one-nucleotide increments across each lncRNA 
in a user-defined group, such as the GENCODE annotation set12.  
K-mer counts for each lncRNA are then normalized by lncRNA length 
and standardized across the group to derive a matrix of k-mer profiles, 
which consist of z-scores for each k-mer in each lncRNA. The relative 
similarity of k-mer profiles between any pair of lncRNAs can then be 
determined via Pearson’s correlation (see Fig. 1a,b and Methods).
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SEEKR offers advantages relative to existing alignment algo-
rithms. Foremost, SEEKR does not consider positional information 
in similarity calculations, allowing it to quantify non-linear sequence 
relationships. For reasons described above, this functionality might 
suit lncRNAs better than traditional alignment algorithms devel-
oped to detect linear sequence homology between evolutionarily 
related entities21,22,25,26. Second, whereas traditional alignment algo-
rithms can only quantify similarity, SEEKR can quantify similari-
ties and differences using Pearson’s correlation. Third, SEEKR can 
quantify relationships in groups of lncRNAs despite differences 
in overall length, whereas length differences can confound tradi-
tional alignment algorithms. For example, conventional alignment 
of a 20-kb and 4-kb RNA is barely informative (80% of the 20-kb 
RNA would not align), but their k-mer contents can be compared 

via SEEKR. Lastly, SEEKR is algorithmically efficient; all pair-wise 
comparisons between human GENCODE lncRNAs can be com-
puted in under 1 min.

Initially, we assessed whether SEEKR could detect previously 
identified sequence similarities in lncRNAs. We compared k-mer 
profiles via SEEKR for all pair-wise combinations in a set of 161 
lncRNAs recently described to be conserved between human and 
mouse27. We also aligned the lncRNAs to each other using two 
existing alignment algorithms, the hidden Markov model based 
nhmmer21, and Stretcher, an implementation of the global align-
ment algorithm Needleman–Wunsch22. In this test, SEEKR detected 
known lncRNA homologs nearly as well as, or better than, both 
algorithms (Fig. 1c). We defined signal-to-background in this assay 
as the ratio between the median similarity of homologous and non-
homologous lncRNAs. By this metric, nhmmer detected homologs 
the most clearly, as expected (signal-to-background ratio of 0.606: 
0.000), followed by SEEKR (signal-to-background of 0.152: − 0.003 
at k-mer length k =  6) and Stretcher (signal-to-background of 0.525: 
0.307; Fig. 1d). We conclude that k-mer-based classification can 
detect sequence similarity between evolutionarily related lncRNAs.

We next examined whether SEEKR could detect novel forms of 
similarity between lncRNAs with no known sequence homology. 
We created k-mer profiles for all lncRNAs in the human and mouse 
GENCODE databases12, as well as for select lncRNAs that were 
not included in GENCODE. Next, we compared k-mer profiles 
between all lncRNAs in each organism using Pearson’s correlation 
and hierarchically clustered the resulting matrices to examine the 
patterns that emerged. Consistent with our hypothesis, clustering 
lncRNAs by SEEKR grouped many by known function in human 
and mouse (Fig. 2). Several known cis-repressive lncRNAs, includ-
ing XIST, TSIX, KCNQ1OT1, UBE3A-ATS, ANRIL/CDKN2B-AS1, 
and Airn, clustered together due to high abundance of AU-rich 
k-mers, whereas several cis-activating lncRNAs, including PCAT6, 
HOTTIP, LINC00570, DBE-T, and HOTAIRM1, clustered sepa-
rately due to high abundance of GC-rich k-mers (Fig. 2a,d). These 
patterns were robust over differing k-mer lengths (Supplementary 
Fig. 2). To determine whether this level of clustering was significant, 
we curated lists of human and mouse cis-activating and cis-repres-
sive lncRNAs from the literature (Supplementary Table 1), and com-
pared average pair-wise k-mer similarities between lncRNAs in each 
list to pair-wise similarities of 10,000 size-matched lists of randomly 
selected lncRNAs from the respective organism. Human and mouse 
cis-repressors, and human cis-activators (but not mouse cis-activa-
tors), were significantly more similar to each other than expected 
by random chance (Supplementary Table 2). Concordantly, SEEKR 
detected significant similarity between the cis-repressive Kcnq1ot1 
and Xist lncRNAs where none was found by conventional alignment 
algorithms (Supplementary Fig. 1). We conclude that lncRNAs of 
related function can have related k-mer profiles even if they lack 
linear sequence similarity.

Unexpected relationships also emerged in the hierarchical clus-
ters of Fig. 2. Most notably, the lncRNAs NEAT1 and MALAT1 
showed greater than average similarity to XIST in both human and 
mouse. Among all human lncRNA pair-wise comparisons, their 
Pearson’s r values fell in the 99.99th and 99.60th percentile, respec-
tively. Likewise, in mouse the similarities were in the 97.15th and 
95.32nd percentiles. The meaning of the similarity between the 
three lncRNAs is unclear, but we note that all three lncRNAs seed 
the formation of subnuclear compartments and engage with actively 
transcribed regions of the genome28–33. We speculate that their k-
mer similarity is related to these shared actions.

LncRNAs can be partitioned into communities of related k-mer 
content. We next used a network-based approach to partition 
lncRNAs into communities of related k-mer profiles, reasoning that 
such communities would provide a framework to understand the 
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Fig. 1 | Overview and initial test of k-mer-based sequence comparison. 
a, LncRNAs of related function (names in black) may harbor similar 
sequence similarity in the form of motif content (colored bars) even if 
they lack linear homology. b, In SEEKR, the abundances of all k-mers of 
length k are counted by tiling across each lncRNA in a user-defined group 
in one-nucleotide increments. K-mer counts are normalized for lncRNA 
length, and standardized across the group to derive z-scores. Similarity is 
evaluated by comparing lncRNA k-mer profiles (lists of z-scores for  
each k-mer in the lncRNAs) with Pearson’s correlation. c, Number of 
homologous pairs detected by SEEKR versus k-mer length in a test set of 
conserved lncRNAs. Green and orange lines mark the homolog number 
detected by Stretcher and nhmmer, respectively. d, Signal-to-background 
ratios for homolog detection via the three methods. Tukey boxplots show 
the lower, median, and upper quartile of values, and ± !1.5!× !interquartile 
range (n!= !161 r values for signal, n!= !12,880 r values for background); 
outliers are not shown. Bkgd, background.
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predictive value of lncRNA k-mer content. We created networks 
of relationships between all human and mouse lncRNAs in which 
weighted edges connected lncRNAs in an organism if the Pearson’s 
correlation between their standardized k-mer profiles met a thresh-
old for similarity (see Methods). We then used the Louvain method 
to assign lncRNAs within the largest connected component of the 
network representations to communities of related k-mer profiles34. 
Approximately half of all GENCODE lncRNAs grouped into five 
major communities in both human and mouse. LncRNAs not 
assigned to the five most populated communities were assigned 
to a ‘null’ community. Our network-based approach and hierar-
chical clustering grouped lncRNAs in similar ways (P < 1 ×  10−324, 
chi-squared; Supplementary Tables 3 and 4), signaling commu-
nity robustness. LncRNA community assignments and associated 
summary statistics are provided in Supplementary Tables 5–12 

and Supplementary Fig. 3. Differences in human and mouse com-
munity structures may be due in part to differences in complete-
ness of lncRNA annotation. In the versions of GENCODE used for 
this work, there were about twice as many lncRNAs annotated in 
human (v22, n =  15,953) as there were annotated in mouse (vM5, 
n =  8,245; ref. 12).

K-mer content correlates with localization and protein binding. 
We next examined whether lncRNAs with related k-mer profiles 
shared biological properties. For this analysis, we focused on human 
lncRNAs, where data from the ENCODE project allowed us to 
examine lncRNA subcellular localization and protein associations, 
transcriptome wide. To determine whether k-mer content provides  
information about lncRNA localization, we examined ENCODE 
subcellular fractionation RNA-sequencing (RNA-seq) experiments 
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performed in HepG2 and K562 cells35. For each lncRNA expressed in 
each cell type, we computed its nuclear ratio and determined whether 
the distributions of nuclear ratios differed between communities. The 
majority of communities showed slight but significant differences 
in their distribution of nuclear ratios, with the largest differences 
found between communities 1 and 3 (Fig. 3a and Supplementary 
Tables 13–16). Concordantly, lncRNAs that associate with poly-
somes in K562 cells36 were also non-uniformly distributed between 
communities (P =  3.5 ×  10−5, chi-squared), and were the most over- 
and under-represented in the most cytoplasmic and nuclear lncRNA 
communities, respectively (communities 3 and 1 being the most 

cytoplasmic and nuclear, respectively; Supplementary Table 17).  
Lastly, we used ENCODE data to identify the most cytoplasmic 
and nuclear lncRNAs in HepG2 and K562 cells and determine 
which k-mers were asymmetrically distributed between lncRNAs in  
the two compartments. We found that 360 and 27 k-mers were  
significantly enriched in cytoplasmic and nuclear lncRNAs, respec-
tively  (P adjusted < 0.05; Kolmogorov–Smirnov test; Supplementary 
Table 18). Consistent with our RNA-seq and polysome analyses, 58% 
and 93% of the cytoplasmic- and nuclear-biased k-mers were the  
most enriched in the most cytoplasmic and nuclear lncRNA  
communities, respectively (communities 3 and 1; see Supplementary 
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Table 18, last column). We conclude that k-mer content provides 
information about the subcellular localization of an lncRNA.

To determine whether k-mer content provides information 
about protein binding in lncRNAs, we examined ENCODE 
data for 156 enhanced cross-linking immunoprecipitation 
(eCLIP) experiments performed for 109 proteins in HepG2 and 
K562 cells37. We created binary vectors for each experiment 
that recorded whether the lncRNAs bound or did not bind a 
given protein, then built separate logistic regression models for 
each protein to determine whether k-mer community assign-
ments could improve prediction of lncRNA–protein associa-
tions over a null model that only included lncRNA length and 
expression as covariates. LncRNA community assignments sig-
nificantly increased the log-likelihood of detecting lncRNA–
protein associations for the majority of proteins examined  
(P adjusted < 0.05;146 of 156, ~ 94%; Fig. 3b and Supplementary 
Table 19). Increases in precision and recall in community-
informed models were generally modest but significant  
(Fig. 3b and Supplementary Table 20). In total, ~ 17% (25 of 146) 
of our models had an increase in precision and/or recall of 5% or 
more. Notably, in all cases in which recall increased, precision 
also increased, indicating that k-mer community information 
increased the ability to predict true lncRNA–protein associa-
tions and simultaneously increased the fidelity of those pre-
dictions. When we used individual 6-mers instead of lncRNA 
communities as predictive features, results were no better than 
the null model that used only lncRNA length and expression 
as predictive features. Models with more features than samples 
are prone to learning noise in their training set, and often lose 
predictive power due to overfitting38. Using individual 6-mers 
brought the number of features being evaluated to 4,099, more 
than the number of lncRNAs expressed in HepG2 and K562 
cells (3,745). We conclude that k-mer content provides infor-
mation about the protein-binding potential of an lncRNA, but 
that no single k-mer provides an overwhelming portion of that 
information, and that k-mer communities provide a way to col-
lapse high-dimensional k-mer matrices down to representative  
variables for predictive purposes.

Protein binding to RNA is difficult to assess from motif con-
tent alone due to the degeneracy of most motifs and the chal-
lenge of predicting the effects of RNA structure24,39–41. Supporting 
this notion, we found that the abundance of motif-matching 
k-mers was consistently, but not always, higher in the communi-
ties enriched for binding of specific proteins than in the cognate 
communities not enriched for binding, indicating that factors in 
addition to motif abundance control protein–lncRNA associations 
(Fig. 3c). We therefore sought to determine whether k-mer content 
could distinguish between motif matches in lncRNAs that coincide 
with protein binding events and those that do not. We searched the 
lncRNAs expressed in HepG2 and K562 cells for matches to binding 
motifs of the 17 proteins in Fig. 3c, whose position weight matri-
ces (PWMs) were determined from biochemical assays in ref. 23.  
We annotated motif matches that fell inside and outside of eCLIP 
peaks as true and false-positive matches, respectively. As expected, 
the majority of motif matches fell outside of eCLIP peaks (that is, 
they were false-positive matches; Supplementary Table 21). We 
then used SEEKR to compare regional k-mer content in 300-nucle-
otide windows surrounding true and false-positive motif matches. 
Remarkably, for 13 of 17 proteins examined, k-mer profiles of 
true-positive binding regions were more similar to each other than 
k-mer profiles of randomly selected, size-matched sets of false-pos-
itive regions (P value < 0.005; Supplementary Fig. 4). These data 
support the notion that binding modules for the same protein in 
different RNAs often have sequence similarity that extends beyond 
the protein-binding motif, and that this similarity can be quanti-
fied, in part, by local k-mer content.

Moreover, SEEKR provides a simple way to visualize the density 
of specific k-mers within eCLIP-enriched regions. We compared 
the most overrepresented k-mers in true-positive binding regions 
to protein-binding motifs measured in vitro23, and found that their 
relationships differed substantially from protein to protein (Fig. 3d 
and Supplementary Fig. 5). For certain proteins, such as HNRNPC, 
KHDRBS1, and QKI, the most enriched k-mers in true-positive 
regions matched the PWM for the protein that was determined in 
vitro23. We interpret this observation to mean that, for these pro-
teins, motif density plays a dominant role in determining RNA 
binding in vivo, because our k-mer data show that motif-matching 
k-mers are more abundant in true-positive regions than they are in 
false-positive regions. For other proteins, such as FXR1, IGFBP1, 
and TIA1, the most enriched k-mers in true-positive regions did 
not match the PWM determined in vitro23. For these proteins, 
sequence beyond the binding motif may play a dominant role in 
dictating association with RNA, possibly due to effects from RNA 
structure. When PWMs were extracted from eCLIP peaks, simi-
lar relationships between k-mers and in vitro-defined motifs were 
observed (Supplementary Fig. 5). These results show how SEEKR 
can be used to augment traditional motif-based analyses and pro-
vide insights into mechanisms of RNA–protein interaction. SEEKR 
provides a way to quantify sequence similarities between any num-
ber of protein-binding regions, which, in turn, can provide predic-
tive power and identify shared characteristics that are not apparent 
from PWM-based motif analyses.

Similarities in lncRNA communities between organisms. Given 
(1) that k-mer content provides some indication of protein-bind-
ing potential in an lncRNA, (2) that sequence specificities of many 
RNA binding proteins are conserved23,24, and (3) that protein bind-
ing probably dictates lncRNA function, we hypothesized that k-mer 
contents between communities of functionally related lncRNAs 
could be conserved even if the lncRNAs themselves lack known 
evolutionary relationships. In support of this idea, we identified 
extensive similarity between certain human and mouse lncRNA 
communities via SEEKR (see Methods and Supplementary Fig. 6). 
Most notably, lncRNAs in human community 1 (the ‘XIST’ com-
munity) had k-mer profiles that were, as a group, nearly indis-
tinguishable from lncRNAs in mouse community 1 (the ‘Xist’ 
community) and were also similar to lncRNAs in mouse commu-
nity 4 (P < 0.0001 for both comparisons). Human community 2  
and community 3 (the ‘HOTTIP’ community) were both similar 
to mouse community 2 (the ‘Hottip’ community; P < 0.0001). No 
other major similarities between mouse and human were appar-
ent. Extending this analysis across greater evolutionary distance, we 
found HOTTIP-like lncRNA communities in ten of ten vertebrates 
examined as well as in the sea urchin Strongylocentrotus purpura-
tus, and XIST-like lncRNA communities in seven of ten vertebrates 
examined (Supplementary Figs. 7–9; ref. 10). These analyses dem-
onstrate that, at the level of k-mers, subsets of human lncRNAs are 
more similar to lncRNAs in other genomes than they are similar to 
lncRNAs in their own genome, supporting the idea that groups of 
lncRNAs have similar function in different organisms despite lack-
ing obvious linear sequence similarity.

SEEKR can predict Xist-like regulatory potential in lncRNAs. We 
next directly tested whether k-mer profiles could be used to predict 
lncRNA regulatory potential. We focused on the ability of certain 
lncRNAs to repress transcription in cis. Cis-repression was one of 
the earliest characterized functions of lncRNAs, and is essential for 
normal human health and development. In the most striking exam-
ple, the XIST lncRNA silences nearly all genes across an entire chro-
mosome during X-chromosome inactivation7. Cis-repression is also 
one of most straightforward lncRNA functions to study because, by 
definition, cis-acting lncRNAs act near their site of transcription.
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We developed a reductionist assay to study lncRNA cis-repressive 
activity in a normalized genomic context, called TETRIS (transpos-
able element to test RNA’s effect on transcription in cis). TETRIS 
enables the sequence of an lncRNA and an adjacent reporter gene 
to be manipulated in a plasmid, but then rapidly inserted into 
chromosomes via the piggyBac transposase42,43, so that effects of 
the lncRNA on the reporter can be studied in genomic chromatin 
(see Fig. 4a and Methods). Under our assay conditions, piggyBac 
catalyzes 4–7 insertions of each cargo per stably selected cell, and 
cell density estimates suggest that between 100,000 and 500,000 
cells receive insertions and survive selection (Fig. 4b and data 
not shown). Thus, each TETRIS assay probably surveys 400,000–
3,500,000 insertion events. Insertion-site-dependent variations in 
lncRNA-induced effects are averaged out in the population, bypass-
ing the need to isolate clones of modified cells, and providing the 
means to quantify lncRNA regulatory potential without influence 
from genomic position.

We validated TETRIS by comparing effects that expression of 
different lncRNAs had on luciferase activity. A cell line created from 
a vector that lacked an lncRNA insert (TETRIS-Empty) showed an 
approximately twofold increase in luciferase activity upon addition 
of doxycycline, representing our baseline for the assay (Fig. 4c).  
We attribute this mild activation to the close proximity of the 
dox-inducible and luciferase promoters, and to the fact that both 
promoters are contained within the same insulated domain44. By 
contrast, expression of the first 2 kb of Xist repressed luciferase five-
fold relative to uninduced control (Fig. 4c). The twofold activation 
and fivefold repression were stable across 9 and 16 independent der-
ivations of TETRIS-Empty and TETRIS-Xist-2kb cell lines, respec-
tively (mean ±  s.d. of 2.03 ±  .50 and 0.23 ±  .08), demonstrating that 
TETRIS assays result in reproducible effects on luciferase activity.  
For its repressive effect, Xist requires ‘Repeat A’, a 425-nucleotide-
long element contained within its first 2 kb45. In the context of 
TETRIS, deletion of Repeat A resulted in a significant, but not  
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complete, de-repression of luciferase, whereas expression of Repeat 
A alone resulted in repression relative to control, but at reduced lev-
els compared to Xist-2kb (‘∆repA’ and ‘repA only’; Fig. 4c). Similarly, 
expression of the first 5.5 kb of Xist caused a fivefold repression of 
luciferase, whereas deletion of the first 2 kb from the 5.5-kb con-
struct caused complete loss of repressive activity (‘Xist-5.5 kb’ and 
‘Xist-2-5.5’; Fig. 4c). Expression of either the final 3.3 kb of Xist or 
the Hottip lncRNA had no repressive effect (Fig. 4c). These experi-
ments demonstrate (1) that TETRIS is a suitable assay to measure 
repression by cis-acting lncRNAs in a normalized genomic context, 
and (2) in the assay, sequence elements in addition to Repeat A 
cooperate to encode repressive function in the 5´ end of Xist.

We next used TETRIS and SEEKR to test our hypothesis that 
k-mer content can predict lncRNA regulatory potential. We rea-
soned that we could design entirely synthetic lncRNAs that lacked 
linear sequence similarity to any known lncRNA but nonetheless 
had robust Xist-like repressive activity. We generated six synthetic 
lncRNA sequences in silico with varying levels of k-mer similar-
ity to the first 2 kb of Xist, and cloned them into TETRIS to mea-
sure their effects on luciferase activity. As measured by SEEKR, the 
lncRNAs had Pearson’s similarities to Xist that ranged from average 
(a Pearson’s r of ~ 0) to 3 s.d. above the mean similarity for all mouse 
lncRNAs (a Pearson’s r of 0.19, more similar to Xist-2kb than all 
other lncRNAs in the mouse genome; see Fig. 4d). Using nhmmer or 
Stretcher to align the synthetic lncRNAs to the first 2 kb of Xist pro-
duced either no alignments (nhmmer) or alignments that differed 
by only 3 % across all six synthetic lncRNAs (Stretcher; see Fig. 4e,  
grid below graph). Via BLAST, the lncRNAs had no significant 
similarity to the mouse genome or to each other (not shown). The 
lack of informative alignments was expected because the synthetic 
lncRNAs have no evolutionary relationship with Xist, any region 
in the genome, or each other. Nevertheless, as envisioned, the syn-
thetic fragments that SEEKR classified to be most similar to Xist had 
the highest repressive activity (Fig. 4e). These data directly dem-
onstrate that evolutionarily unrelated lncRNAs can encode similar 
function through different spatial arrangements of related sequence 
motifs. Thus, k-mer content can be used to predict lncRNA regula-
tory potential.

We next examined whether SEEKR could predict Xist-like 
repressive activity in endogenous lncRNAs. We cloned into 
TETRIS 33 lncRNAs or lncRNA fragments that had a range of 
k-mer similarities to the first 2 kb of Xist. Included in our final 
set of fragments were several conserved lncRNAs and/or shorter 
fragments contained within them (Airn, Hottip, Kcnq1ot1, 
Malat1, Neat1, and Pvt1), as well as many lncRNAs with unchar-
acterized functions (Supplementary Table 22). Again, the more 
Xist-like an lncRNA fragment was at the level of k-mers, the more 
likely it was to repress in TETRIS; the Pearson’s r value between 
Xist-likeness at a k-mer length of 6 and luciferase activity upon 
dox addition was − 0.41 (P =  0.02). Including the 6 synthetic 
lncRNAs in the correlation brought the Pearson’s r value to − 0.52 
(P =  0.0007; Fig. 4f). Nhmmer and Stretcher had no ability to 
predict repressive activity, demonstrating that these algorithms 
cannot detect sequence signatures correlated with repressive 
activity in this setting (P =  0.32 and 0.91, respectively; Fig. 4g,h). 
LncRNA fragment length also had no ability to predict repressive 
activity (r =  0.03, P =  0.84).

Lastly, we examined whether k-mer profiles associated with 
sequence elements required for repression by Xist-2kb might 
increase our ability to predict repressive activity in other lncRNAs. 
To determine the elements in Xist-2kb required for repression, we 
made a series of 26 deletions (Fig. 5). Surprisingly, 15 of the dele-
tions, including ones that removed predicted stable structures, 
pseudoknots, and ~ 40% of Repeat A (‘∆ SS1’, ‘∆ SS2’, ‘∆ PK2’, ‘∆ SS3’, 
and ‘∆ SS4’; see bottom panel in Fig. 5; ref. 41), had no significant 
effect on repression. However, removal of all 8 GC-rich portions 

of Repeat A, but not its U-rich linkers, caused an approximately 
threefold reduction in repression (‘∆ GC repeat in rA’ versus ‘∆ U 
spacer in rA’), as did removal of 3 predicted stable structures and 
their intervening sequences in the 742 nucleotides immediately 
downstream of Repeat A (‘∆ SS2/3/4 broad’; ref. 41). Co-deletion of 
Repeat A and the stable structures had an additive effect, causing 
a near complete loss of repression (the ‘∆ rA∆ SS234 br.’ mutant), 
whereas expression of Repeat A or the stable structures alone 
had half the repressive potency of Xist-2kb (‘Only rA’ and ‘Only 
SS234’). Expression of both regions together had the same repres-
sive potency as Xist-2kb (‘Minimal’). Thus, in TETRIS, the major 
elements required for repression are contained between nucleotides 
308 and 1,476 of Xist. Based on prior structural models41,46, we infer 
that the elements are comprised of protein binding sites, spacer 
sequences, and stable structures.

Having mapped the elements responsible for repression in 
Xist-2kb, we attempted to extract subsets of 6-mers from them 
that increased our ability to predict Xist-like repression. We also 
examined whether k-mer variance across lncRNA communities or 
k-mer nucleotide composition could be used to extract subsets of 
outperforming 6-mers, and whether different k-mer lengths had 
better predictive power than k =  6. No rationally designed subset 
of 6-mers could predict repression better than the full 6-mer pro-
file of Xist-2kb, nor could any other k-mer length (Supplementary 
Fig. 10). These results support the ideas that different lncRNAs can 
encode similar function through related, but not necessarily identi-
cal, sequence solutions, and that the full complement of 6-mers may 
be a broadly effective search tool to identify such similarities (not 
too relaxed, not too stringent).

Discussion
Collectively, our data support the notion that many lncRNAs 
function through recruitment of proteins that harbor degener-
ate RNA-binding motifs, and that spatial relationships between 
protein-binding motifs in these lncRNAs are often of secondary 
importance to the concentration and effectiveness of the motifs 
themselves. By this logic, an lncRNA may merely need to present 
the appropriate motifs embedded within the appropriate structural 
contexts to achieve a specific function. Thus, different lncRNAs 
probably encode similar function through vastly different sequence 
solutions, and non-linear sequence comparisons can be used to dis-
cover similarities between them. By extension, because the RNA-
binding motifs of many proteins are conserved23,24, it is plausible 
that groups of lncRNAs rely on similar motifs to encode related 
function in different organisms even though they lack direct evo-
lutionary relationships. This concept is supported by our observa-
tion that lncRNA communities with related k-mer contents exist in 
human, mouse, and other organisms. We propose that non-linear 
sequence homology—in which the relative abundance of a set of 
protein-binding motifs is conserved, but the sequential relation-
ships between them are not—is prevalent in lncRNAs. To quantify 
non-linear homology, we introduce SEEKR, a method to compare 
sequence content between any group of lncRNAs, regardless of 
the size of the group, the evolutionary relationships between the 
lncRNAs being analyzed, or the differences in their lengths. Each 
lncRNA (and each functional domain within each lncRNA) has its 
own k-mer signature, which can encode information about protein 
binding and RNA structure. SEEKR provides a simple way to tie this 
information to a biological property.

URLs. SEEKR, https://github.com/CalabreseLab/seekr; nhmmer, 
http://hmmer.org/download.html; Biopython, http://biopython.
org/; CHAMP, https://github.com/wweir827/champ; Gephi, https://
gephi.org/; ENCODE RNA-seq, http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/; 
MEME, http://meme-suite.org/doc/fimo.html.
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Methods
Kcnq1ot1 versus Xist comparison. Kcnq1ot1 was aligned to Xist using nhmmer 
and Stretcher with default parameters. To assess significance of the alignments, 
we generated 1,000 pseudo-Kcnq1ot1s that were the same length as real Kcnq1ot1 
but composed of nucleotides randomly selected from a distribution of the 
mononucleotide content of Kcnq1ot1 (0.335A: 0.205G: 0.202C: 0.258T). We 
then aligned the pseudo-lncRNAs to Xist with nhmmer and Stretcher as well as 
compared their k-mer contents relative to all other mouse lncRNAs at k-mer length 
k =  6 via SEEKR.

SEEKR. In SEEKR, a matrix of k-mer counts for a user-defined set of lncRNAs 
is created by counting all occurrences of each k-mer in each lncRNA in one-
nucleotide increments, and then dividing those counts by the length of the 
corresponding lncRNA. Z-scores are then derived for each k-mer in each lncRNA 
by subtracting the mean length-normalized abundance of each k-mer in the group 
of lncRNAs being analyzed from the length-normalized abundance of the k-mer 
in the lncRNA in question, and then dividing that difference by the standard 
deviation in abundance of that k-mer in the group of lncRNAs being analyzed. We 
refer to the array of z-scores for each k-mer in a given lncRNA as its k-mer profile. 
Similarity between any two lncRNAs can be calculated by comparing their k-mer 
profiles with Pearson’s correlation.

Our rationale for length normalization in SEEKR follows. Without length 
normalization, k-mer profiles become difficult to interpret for lncRNAs of different 
lengths. For example, an RNA that is ten times longer than another RNA will 
have ten times the number of k-mers. Without normalization, these lncRNAs 
would be considered dissimilar by SEEKR, regardless of the similarity in their 
relative concentrations of k-mers. By length normalizing, SEEKR creates a list of 
relative k-mer concentrations in a given lncRNA that is robust to differences in 
length. The idea that length normalization is important is supported by studies 
of known cis-repressive lncRNAs. At 18 kb, the Xist lncRNA is the most potent 
cis-repressive lncRNA known. At least three other known cis-repressive lncRNAs 
are longer than Xist, but less potent: Airn, Kcnq1ot1, and Ube3a-ATS are 90 kb, 
85 kb, and 1.1 Mb, respectively7. Of these, the longest lncRNA, Ube3a-ATS, is the 
least potent, arguing that length alone does not account for lncRNA potency. In 
certain biological contexts, lncRNA length may be relevant, or it may have varying 
influence on lncRNA function. However, what these contexts might be and to what 
extent length does or does not affect lncRNA function in them are not known and 
difficult to predict. We also note that Pearson’s correlation inherently normalizes 
for length. Thus, comparisons of k-mer content that use Pearson’s correlation will 
eliminate length as a variable.

GENCODE lncRNA annotations. All GENCODE annotations used in this work 
were from human build v22 and mouse build vM512. For each lncRNA, only the 
major splice annotation was considered (the − 001 isoform). In total, there were 
15,953 human and 8,245 mouse transcripts. The heat maps in Fig. 2 were generated 
with GENCODE annotations plus the additional lncRNA sequences downloaded 
from the UCSC genome browser47: SAMMSON, XACT, UBE3A-ATS, MORRBID, 
and NESPAS (human); and unspliced Airn, Anril, Bvht, Haunt, Morrbid, unspliced 
Tsix, Ube3a-ATS, XistAR, and Upperhand (mouse).

Conservation analysis. Ninety-three pairs of human and mouse GENCODE 
lncRNAs were recently identified as putative homologs due to their high 
conservation at the DNA level27. These 93 lncRNAs, plus an additional 68 lncRNA 
pairs that had equivalent names in mouse and human GENCODE annotations, 
formed the final set of 161 homologs that were used for the conservation analysis 
of Fig. 1c. For the Fig. 1c experiment, ‘signal’ values were computed as the mean 
of the 161 homolog-to-homolog measurements in each of the three algorithms; 
likewise, background values were computed as the mean of the remaining 12,880 
non-homologous comparisons. Homologous pairs were defined as being ‘detected’ 
if the signal value/average similarity (as determined via SEEKR, nhmmer, or 
Stretcher) was higher for homolog-to-homolog measurements than it was for 
all other lncRNA-to-non-homolog comparisons. For this analysis, nhmmer 
was downloaded as part of the HMMER package (see URLs) and was run 
with --nonull2, --nobias, --noali, and -o flags set. Stretcher was used as part of 
Biopython (see URLs) and was run with --gapopen =  16, and –gapextend =  4.

Hierarchical clustering and labeling. Hierarchical clustering was performed with 
the R package ‘amap’ using Pearson’s as a distance metric and average linkage48, 
and was visualized with Java Treeview49. We used k-mer length k =  6 for our main 
analyses because it performed well in evolutionary comparisons (Fig. 1c), and it 
provided a feature number (46 =  4,096 features) that was only marginally larger 
than the average length of a GENCODE lncRNA (1,152 and 1,471 nucleotides for 
human and mouse lncRNAs, respectively).

Clustering of known cis-activating and cis-repressive lncRNAs. We performed 
a literature review to curate lists of experimentally verified cis-repressive and cis-
activating lncRNAs in mouse and human (Supplementary Table 1). We calculated 
the mean pair-wise similarity between all lncRNAs in each of these groups, and 
compared those means with the distribution of mean similarities calculated 

from pair-wise comparisons of 10,000 randomly selected, size-matched groups 
of lncRNAs in their respective organism to generate P values that describe the 
likelihood that the similarity observed between the functionally related cis-acting 
lncRNAs was greater than would have been expected from random chance 
(Supplementary Table 2).

Network analysis and lncRNA community definition. Networks of lncRNAs 
were formed from a weighted adjacency matrix in which edges between any 
two lncRNAs were kept only if their Pearson’s r value was at least 0.13. We 
selected the lncRNAs within the largest connected component of this network 
representation and used the Louvain algorithm34 at default resolution parameter 
to assign lncRNAs to communities of related k-mer profiles (using the Python 
package ‘louvain-igraph’). This decision was supported through use of the recently 
developed CHAMP algorithm50 (see URLs), which found a wide domain of 
optimality around the default resolution parameter. We retained assignments for 
the lncRNAs present in the top five most populated communities, and assigned 
the remaining lncRNAs, including those not found in the largest connected 
component of the network representation, to the null community, which served 
as an important outgroup for our comparisons of k-mer content and biological 
properties in Fig. 3. Multiple Pearson’s r value thresholds between 0.12 and 0.21 
were tested for human lncRNAs and we found little to no difference in community 
definition, correlation with lncRNA localization, or ability to predict protein-
binding patterns (not shown). Gephi was used for network visualization (see 
URLs). Community colors were automatically assigned by Gephi according to the 
size of each community.

We also compared communities generated with 5-mers and 7-mers to 
those generated with 6-mers. We created contingency tables that compared the 
distribution of lncRNAs in each of the five major 6-mer communities plus the 
null to the distribution of lncRNAs in each of the five major 5-mer and 7-mer 
communities plus their respective nulls. P values comparing communities 
between the k-mer lengths were all < 1 ×  10−324 (chi-squared), indicating that 
community definitions are largely stable when 5-mers, 6-mers, or 7-mers are 
used (Supplementary Tables 9 and 10). This stability, the quality of our TETRIS 
predictions when using 6-mers (Supplementary Fig. 10), and the computational 
inefficiency of performing operations on matrices of k-mers with length k =  7 or 
greater provided additional support for our decision to use 6-mers for the bulk of 
our analyses.

We applied the same r value threshold and community assignment logic that 
we used for human lncRNAs to define lncRNA communities using k-mer length 
k =  6 in all other organisms.

Comparing lncRNA groups in hierarchical clusters to lncRNA communities 
found by Louvain. Clusters of lncRNAs with similar k-mer content in human and 
mouse (from Fig. 2) were created by manually making cuts in the dendrogram 
of the hierarchical clusters that maximized the visual similarity of k-mer profiles 
between lncRNAs in each cluster. Five cuts were made in the hierarchical cluster 
from each organism to approximate the five major communities found by the 
Louvain algorithm. We measured the similarity of the manually made clusters to 
the five major Louvain-defined communities by a creating a contingency table that 
compared lncRNA distributions between the two methods. We then tested whether 
the distributions of lncRNAs across the two sets of communities were significantly 
similar via a chi-squared test. In both human and mouse, the P value was  
< 1 ×  10−324 (Supplementary Tables 3 and 4).

LncRNA localization analysis. Localization data were downloaded from 
ENCODE (see URLs) as fastq files and aligned to GRCh38 with STAR using 
default parameters47,51. FeatureCounts was used to tabulate the number of reads 
aligning to our set of lncRNAs52. We then filtered out all lncRNAs with < 0.1 reads 
per kilobase of transcript per million aligned reads (RPKM) from each community, 
and calculated the number of reads in the nuclear fraction over the total number of 
reads from both the nuclear and cytosolic fractions for each lncRNA.

To determine whether specific k-mers were enriched in cytosolic or nuclear 
lncRNAs, we selected cytosolic- and nuclear-enriched subgroups of lncRNAs that 
were expressed in HepG2 or K562 cells. Because the subcellular distribution values 
for HepG2 or K562 expressed lncRNAs were not normally distributed (Fig. 3a), we 
needed to employ different thresholds to define cytosolic and nuclear so that the 
two groups would include similar numbers of lncRNAs. ‘Cytosolic’ lncRNAs were 
defined as any lncRNA that was more than 50% cytosolic, which resulted in 2,801 
transcripts, and ‘nuclear’ lncRNAs were defined as any lncRNA that was more 
than 95% nuclear, which resulted in 4,576 transcripts. To determine the average 
difference in k-mer abundance between lncRNAs in the two compartments, we 
calculated the mean value of the z-scores for each k-mer in each group, and then 
used the difference between the means as the metric to calculate the nuclear-
enrichment score (Supplementary Table 18). To test for significant differences 
between the distributions of z-scores between lncRNAs in the two compartments, 
we used a Kolmogorov–Smirnov (KS)-test and calculated an adjusted P value using 
a Bonferroni correction. This analysis yielded 387 k-mers whose distributions 
differed significantly between cytosolic and nuclear lncRNAs (P value < 0.05; 
Supplementary Table 18).
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Using only the lncRNAs from community 3, we repeated the process 
of applying the Louvain algorithm to define communities and measure 
cellular localization in order to rule out the possibility that potential 
subcommunities were responsible for the cytosolic nature of community 3.  
The Louvain algorithm found four main subcommunities and all smaller 
subcommunities were grouped into a fifth community. The results 
of analysis of variance tests indicated that there were no significant 
differences between any of the communities for either the polyA-selected 
or ribosome-depleted RNA-seq data. We performed this analysis again 
for community 1, but no subcommunities were found to be significantly 
different (Supplementary Fig. 11). This uniformity of cellular localization 
among possible subcommunities provides biological support for our original 
community definitions.

LncRNA polysome association. A recent study found 229 lncRNAs in GENCODE 
v22 that were polysome-associated in K562 cells36. A chi-squared test showed that 
these 229 lncRNAs were non-randomly distributed between the communities 
(P value =  3.5 ×  10−5; Supplementary Table 17). The expected values for the chi-
squared test were calculated by filtering all communities for lncRNAs expressed 
in K562 cells, dividing the number of lncRNAs in each community by the 
total number of expressed lncRNAs (3,277), and multiplying by the number of 
polysomal lncRNAs (229).

LncRNA–protein association data. eCLIP data were downloaded from 
ENCODE35,37. For each of the 156 eCLIP experiments ‘bed narrowPeak’ data 
(representing sites of protein binding that passed an ENCODE-defined 
threshold for enrichment over background; refs 35,37) were pooled from 
available biological duplicates. Genomic coordinates were overlapped with 
lncRNA exon coordinates annotated by GENCODE. Any lncRNA that 
overlapped with one or more eCLIP peak was considered as having a true 
binding interaction with the given protein. LncRNA expression data were 
collected from ENCODE RNA-seq experiments in the same cell type as that of 
the eCLIP experiment (HepG2 or K562).

For each protein, a vector was built for each lncRNA that encoded whether 
the protein–lncRNA pair did or did not interact. Next, two feature matrices (null 
and full) were constructed. The null matrix included the log normalized values 
for length and expression of each of the lncRNAs. The full matrix included log 
normalized length and expression, as well as an additional five columns that 
corresponded to each of the five lncRNA communities. Each lncRNA was assigned 
a value of 1 in the column representing its community.

Models of protein associations. To address whether lncRNA communities 
contained information about lncRNA–protein associations, we used a machine 
learning model53. We tested whether providing the model with the community data 
allowed it to predict interactions better than a corresponding null model that was 
not given the community data but still included lncRNA length and expression 
values as covariates. Logistic regression models were implemented with scikit-
learn, using default parameters53. The significance of the additional community 
information was measured with a likelihood ratio test (LRT), where the LRT 
statistic, D, was defined as:

= × −D full model likelihood null model likelihood2 (log( ) log( ))

A chi-squared distribution was used to determine the corresponding P value 
for the LRT statistic. P values were adjusted with a Bonferroni correction for the 
156 comparisons.

To quantify the extent of the effect that community inclusion had on prediction 
of lncRNA–protein interactions, we used a leave-one-out-cross-validation 
approach to measure precision and recall metrics53, defined as:

= +Precision True Positives
True Positives False Positives

= +Recall True Positives
True Positives False Negatives

In our model, precision is the number of lncRNAs correctly predicted to bind 
a protein, divided by the total number of lncRNAs the model predicted to bind a 
protein. Recall is the number of lncRNAs the model correctly predicted to bind a 
protein, divided by the total number of lncRNAs found to bind a protein according 
to the eCLIP data. For each lncRNA, the logistic regression models were allowed 
to train on all other lncRNAs except the single ‘left out’ lncRNA. After training, 
both models were asked to predict whether the left out lncRNA did or did not bind 
the protein. This procedure was repeated for all lncRNAs in each eCLIP dataset to 
calculate precision and recall.

The methodology for training and testing the raw k-mer models was exactly 
the same as described above except that the 5 community features were replaced by 
the 4,096 relative k-mer abundance features.

Calculating the abundance of motif-matching k-mers in lncRNA communities. 
The data for the bar graph in Fig. 3c were generated by the following approach. Of the 
109 proteins on which eCLIP was performed in ref. 37, 79 showed significant association 
with at least one k-mer community over the null (Supplementary Table 19). Of these 
79 proteins, binding motifs for 17 were determined via an in vitro binding assay 
in ref. 23. The PWMs for each of these 17 proteins contained relative weights 
for each motif matching 6-mer, representing the likelihood that the k-mer in 
question would bind the protein in question. We multiplied the weight of each 
motif-matching 6-mer by its average standardized abundance in each of the six 
communities, including the null, to obtain k-mer abundances that were scaled by 
the likelihood that the k-mer in question matched the binding motif in question. 
For each of the 17 proteins, sums of the weighted abundance for all motif-matching 
k-mers were created for the communities in which protein binding was enriched 
and not enriched over the null, respectively, then divided by the number of 
communities in each group to obtain the average weighted abundance of motif-
matching k-mers in the binding-enriched and binding-not-enriched groups. These 
abundances are plotted in Fig. 3c. For proteins that had more than one PWM 
reported in ref. 23, the average abundance shown in Fig. 3c is comprised of the 
weighted abundance averaged over all reported PWMs. To calculate significance, 
we shuffled the communities in the binding-enriched and binding-not-enriched 
groups 10,000 times and determined how often the difference in k-mer abundance 
between the randomly shuffled binding-enriched and binding-not-enriched groups 
was greater than the difference between the real binding-enriched and binding-
not-enriched groups.

Measuring k-mer similarity surrounding motif matches in lncRNAs. The 
lncRNAs expressed in HepG2 and K562 cells were examined for motif matches 
to the 17 proteins for which eCLIP data was reported in ref. 37 and whose PWMs 
were determined via a high-throughput in vitro assay in ref. 23 by using FIMO at 
a threshold of P < 0.01 (from the MEME suite, see URLs; ref. 54; Supplementary 
Table 21). Each motif match was then labeled as a true positive if it overlapped 
an eCLIP peak, or a false positive if it did not. For each protein, the sequences 
surrounding the center of each true- and false-positive motif match (up to 
150 bp on either side of the center, or up to the end of the gene, whichever 
came first) were collected and their k-mer contents were analyzed with SEEKR. 
Significance of the similarity between true-positive regions was measured 
by a permutation test against randomly selected sets of false-positive regions 
controlling for both the size of the set and the number of overlapping regions in 
the set (Supplementary Fig. 4).

Identifying motifs from eCLIP peaks. To find motifs in eCLIP peaks for the 17 
proteins listed in Fig. 3c, we extracted the subset of sequences from eCLIP peaks 
whose CLIPper-defined P value was < 0.001 (peaks with the highest read densities 
relative to control; ref. 37). We searched these sequences for motifs using DREME at 
default parameters as a part of the MEME-ChIP package55.

Human-to-mouse and human-to-other community similarity calculations. 
To evaluate the similarity between human and mouse lncRNA communities, we 
calculated the distribution of similarities between all pair-wise combinations of 
lncRNAs within each human k-mer community (‘human-to-self ’), and compared 
this distribution to: (1) a distribution of pair-wise comparisons made between 
all other human lncRNAs excepting lncRNAs from the community in question 
(‘human-to-other-human’), (2) distributions of all pair-wise comparisons 
made between all lncRNAs in each of the five mouse lncRNA communities 
(‘human-to-mouse’), and (3) distributions of all pair-wise comparisons made 
between all human and mouse lncRNAs that did not fall into one of the five 
major communities (‘human-to-null’). We then performed a permutation test to 
determine whether a given human community was similar enough to a mouse 
community to overcome its intrinsic similarity to other lncRNAs in the human 
genome. The expectation was that, for related communities, the human-to-
mouse distribution would be more similar to the human-to-self distribution than 
it would be to the human-to-other-human and human-to-null distributions. 
Bonferroni-adjusted P values were calculated by permutation tests where we 
iteratively subsampled 0.1–1% of each distribution, re-measured the mean pair-
wise similarities, counted the number of trials in which the human-to-mouse 
mean subsample was closer to the human-to-other-human mean than it was to the 
human-to-self mean, and, finally, divided by the total number of trials performed 
(36,000). This bootstrapping procedure provided a statistical framework to 
determine whether the similarities uncovered between human and mouse 
communities were greater than would have been expected from random chance. 
For example, in each of 36,000 tests, the distribution of similarities between a 
randomly selected subset of lncRNAs from human community 1 and size-matched 
subsets of lncRNAs from mouse community 1 was always more similar to the 
distribution of similarities between all pair-wise comparisons of the human 
community 1 subset than it was similar to the distribution of similarities between 
the human community 1 subset and size-matched subsets of non-community 1 
human lncRNAs (see upper left panel in Supplementary Fig. 6, ‘H-1 versus M-1’ 
plot—the H-1-versus-H-1 distribution in red is nearly indistinguishable from the 
H-1-versus-M-1 distribution in purple).
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To generate the plots in Supplementary Figs. 8 and 9, identical analyses were 
performed that compared human lncRNA communities to lncRNA communities 
from rabbit, dog, opossum, chicken, lizard, coelacanth, zebrafish, stickleback, Nile 
tilapia, elephant shark, and sea urchin10. In these latter cases, the human XIST and 
HOTTIP lncRNAs were doped into the lncRNA annotation set from the organism 
in question to find the homologous communities that were the most XIST- and 
HOTTIP-like (Supplementary Fig. 7).

Generation of plasmids for TETRIS assays. The pTETRIS-cargo vector was 
created from components of a cumate-inducible piggyBAC transposon vector 
(System Biosciences), pGl4.10-Luciferase (Promega), and pTRE-Tight (Clontech). 
Briefly, a 567-bp fragment containing a minimal mouse PGK promoter was cloned 
into a SacI site in pGl4.10-Luciferase to generate pGI4-PGK-Luc-pA. The reverse 
complement of PGK-Luc-pA was cloned into a vector containing the bovine 
growth hormone polyA site. The entire bGHpa-[reversePGK-Luc-pA] was cloned 
into NotI and SalI sites of the piggyBAC vector (System Biosciences). The cumate-
inducible promoter in the piggyBAC vector was then replaced with the Tetracycline 
Responsive Element (TRE) from pTRE-Tight (Clontech) via Gibson assembly to 
generate pTETRIS-cargo in Fig. 4a, in which the lncRNA, the luciferase gene, and 
a gene encoding puromycin resistance are all flanked by chicken HS4 insulator 
elements, and inverted terminal repeats recognized by the piggyBAC transposase. 
The rtTA-cargo vector from Fig. 4a was generated by cloning the hUbiC-rtTA3-
IRES-Neo cassette from pSLIK-Neo (Addgene Plasmid no. 25735) into SfiI and 
SalI sites in a piggyBAC transposon vector (System Biosciences). The piggyBAC 
transposase from System Biosciences was cloned into SmaI and HindIII sites in 
pUC19 (NEB) to allow propagation of the transposase on ampicillin plates.

Generation of TETRIS-lncRNA Cargo vectors. LncRNA fragments were PCR-
amplified from genomic DNA or bacterial artificial chromosomes using Phusion 
DNA Polymerase (NEB), or commercially synthesized (Genewiz, IDT), and cloned 
via Gibson assembly into the SwaI site of pTETRIS-Cargo. Insert size was verified 
by restriction digestion, and the 5´ and 3´ end of each insert was verified by Sanger 
sequencing. To generate mutant Xist-2kb constructs, the 2-kb fragment of Xist 
was subcloned into pGEM-T-Easy, and the regions in question were deleted using 
site-directed mutagenesis, or by synthesis of a mutated fragment and re-cloning 
back into compatible sites in pGEM-Xist-2kb (Genewiz). Deletions were verified 
by Sanger sequencing and then assembled into the SwaI site of pTETRIS-Cargo. 
The sequences of all inserted fragments, including Xist-2kb mutations, are listed in 
Supplementary Table 22.

Estimation of TETRIS copy number per cell. Genomic DNA was prepared from 
biological triplicate derivations of TETRIS-GFP and TETRIS-Xist-2kb cell lines. 
qPCR signal (SsoFast, Biorad) from the genomic DNA was compared to signal 
from a molar standard amplified from increasing amounts of the corresponding 
TETRIS plasmid (Supplementary Table 23).

TETRIS assays. To generate stable TETRIS-lncRNA cell lines, 8 ×  105 E14 
embryonic stem cells (ATCC CRL-1821) were seeded in a single well of a 6-well 
plate, and the next day transfected with 0.5 µ g TETRIS cargo, 0.5 µ g rtTA-cargo, 
and 1 µ g of pUC19-piggyBAC transposase. Cells were subsequently selected on 
puromycin (2 µ g ml−1) and G418 (200 µ g ml−1) for 6–12 d. Due to the efficiency of 
piggyBAC cargo integration and the rapidity of puromycin selection, all observable 
death from drug selection occurred within ~ 3 d after addition of puromycin 
and G418 (that is, cells with puromycin resistance were invariably resistant to 
G418). For luciferase assays, 1 ×  105 cells per well of a 24-well plate were seeded in 
triplicate from each biological replicate preparation of a stable TETRIS-lncRNA 
cell line. At 24 h post seeding, medium was changed to include doxycycline at a 
final concentration of 1 µ g ml−1. After 2 d growth in dox-containing media, cells 
were lysed with 100 µ l passive lysis buffer (Promega), and luciferase activity was 
measured using Bright-Glo Luciferase Assay reagents (Promega) on a PHERAstar 
FS plate reader (BMG Labtech). Luciferase activity was normalized to protein 
concentration in the lysates via Bradford assay (Biorad). Each lncRNA fragment 
was assayed at least in triplicate from at least two independent biological replicate 
preparations of stable TETRIS-lncRNA cell lines.

Synthetic lncRNA design. Synthetic lncRNAs were designed by generating 
10,000,000, 1,650-nucleotide-long lncRNAs in silico that were composed of 
nucleotides randomly selected based on a given input ratio. To generate synthetic 
lncRNAs 2 through 6, the input ratio was the mononucleotide content of the 
2,016-nucleotide-long fragment of Xist inserted into TETRIS (0.203A: 0.262G: 
0.204C: 0.331T). To generate synthetic lncRNA 1, the input ratio was an equal 
proportion of mononucleotides (0.250A: 0.250G: 0.250C: 0.250T). Synthetic 

lncRNAs with the specified k-mer similarity to the 2-kb fragment of Xist were then 
selected and synthesized as geneBlocks (Integrated DNA Technologies) and Gibson 
assembled into the SwaI site in TETRIS. Similarities in k-mer content to the 2-kb 
fragment of Xist are relative to all other mouse GENCODE lncRNAs.

Visualization of Xist structural models. Minimum free energy and probability-arc 
structural models of Xist-2kb were generated using SHAPE-MaP data from ref. 41, 
the visualization package VARNA56, and a modified version of the IGV browser57. 
Predicted pseudoknots and regions of low SHAPE reactivity and low Shannon 
entropy in Xist-2kb are from ref. 41.

TETRIS predictions for k-mer sizes and subsets. We measured SEEKR’s ability 
to capture the relationship between an lncRNA’s Xist-likeness and its repressive 
ability in the TETRIS assay using k-mers from size one to eight. In each case, the 
correlation is measured using the means of all biological and technical replicates 
of each real and synthetic lncRNA, and by normalizing k-mer counts of Xist-2kb 
and the lncRNA in question in context with all mouse GENCODE lncRNAs. This 
process was repeated for select subsets of k-mers that had the potential to increase 
our ability to predict repressive activity in TETRIS. Individual subsets were created 
by counting and normalizing k-mers as normal with SEEKR then removing 
columns of the resulting count matrix that were not included in a given subset. 
Additionally, we randomly generated 100,000 k-mer subsets each containing 
between 2 and 4,095 k-mers, and measured each of the subsets’ Pearson’s r values 
relative to our TETRIS data (Supplementary Fig. 10).

Statistical analyses. All statistics were performed in Python or R. Details of 
statistical analyses are described in the corresponding sections. All multiple 
comparison tests were adjusted using a Bonferroni correction. P values are 
reported as exact values except in cases where the P value was calculated using a 
permutation test, and no random samples were found to be more extreme than 
the observed value. In these cases, P values are reported as (P ≤ 1/n), where n is the 
number of permutations performed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. SEEKR is open source and available on GitHub (see URLs). A 
web instance of SEEKR is hosted at http://seekr.org/. A library for counting small 
k-mer frequencies in nucleotide sequences is available as Supplementary Software.

Data availability
The datasets generated during and/or analyzed during the current study are avail-
able within the article and its supplementary information files.
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