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ABSTRACT

Mutational profiling (MaP) enables detection of sites of chemical modification in RNA as sequence changes during reverse
transcription (RT), subsequently read out by massively parallel sequencing. We introduce ShapeMapper 2, which integrates
careful handling of all classes of adduct-induced sequence changes, sequence variant correction, basecall quality filters, and
quality-control warnings to now identify RNA adduct sites as accurately as achieved by careful manual analysis of
electrophoresis data, the prior highest-accuracy standard. MaP and ShapeMapper 2 provide a robust, experimentally concise,
and accurate approach for reading out nucleic acid chemical probing experiments.
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INTRODUCTION

The ability to detect chemical adducts in RNA is the founda-
tion for powerful technologies that enable analysis of RNA
secondary and tertiary structure (Ehresmann et al. 1987;
Mortimer and Weeks 2007; Tijerina et al. 2007; Weeks
2010, 2015) and detection of some epigenetic modifications
(Behm-Ansmant et al. 2011). Several RNA structure probing
technologies, including those using SHAPE (selective 2′-hy-
droxyl acylation analyzed by primer extension) and dimethyl
sulfate, have been implemented in high-throughput formats
(Kwok et al. 2013; Incarnato et al. 2014; Loughrey et al. 2014;
Rouskin et al. 2014; Siegfried et al. 2014; Talkish et al. 2014;
Poulsen et al. 2015; Smola et al. 2015b; Spitale et al. 2015).
Most methods for reading out the results of RNA chemical
probing experiments use primer extension–truncation and
adapter-ligation to create libraries for analysis by massively
parallel sequencing. These strategies are experimentally de-
manding to implement and can result in significant biases
(Jackson et al. 2014; Fuchs et al. 2015). Truncation–adapt-
er-ligation based strategies often fail to recover structural in-
formation with the accuracy intrinsic to the original
chemical probing or epigenetic modification detection ex-
periment (Kwok et al. 2013; Smola et al. 2015a; Weeks
2015). The shortcomings of truncation–adapter-ligation ap-
proaches are often accepted as an intrinsic cost of high-
throughput readouts and are taken to be an acceptable trade-

off in which collecting an extensive catalog of data compen-
sates for the low quantitative accuracy of some individual
RNA reactivity measurements.
Mutational profiling (MaP) takes a different strategy.

Under specialized conditions, some reverse transcriptase
enzymes will extend cDNA synthesis through the site of a
nucleotide containing a chemical modification on the base
or ribose backbone (Fig. 1A), recording the site of the
chemical adduct as a variation relative to the sequence
complementary to the RNA being copied (Fig. 1C,D).
MaP thus records the site of a chemical adduct directly at
an internal position in the cDNA. These DNAs can be
amplified using methods that ultimately introduce little
bias relative to a no-modification control (Siegfried et al.
2014; Smola et al. 2015a,b), and sequenced using massively
parallel methods (Fig. 1A). Most users also find that MaP
is extremely straightforward to implement. For some chem-
ical probes, MaP also appears to be more sensitive to low-
level modifications than truncation–adapter-ligation meth-
ods (Krokhotin et al. 2017). The MaP step can be imple-
mented to enable analysis of both short and long RNAs,
of entire transcriptomes, and of rare transcripts in complex
transcriptomes (Smola et al. 2015b, 2016). Because multiple
chemical adducts can be read out in a single sequencing
read (Fig. 1A), MaP can detect correlated chemical
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modifications in the same RNA strand. This feature makes
it possible to examine through-space interactions (RNA in-
teraction groups or RINGs) and corresponds to a single
molecule experiment read out by sequencing: the RING-
MaP experiment (Homan et al. 2014; Larman et al.
2017). MaP can also be used to detect sites of certain epige-
netic modifications in RNA.

In theMaP strategy, chemical adducts are inferred through
the location of (often multiple) mutations in sequence reads,
and extracting this information from a MaP experiment
presents unique analysis challenges. These challenges include

(i) accounting for diverse classes of sequence variations
introduced during reverse transcription, (ii) correctly infer-
ring chemical modification sites from ambiguously aligned
mutations, and (iii) accounting for mutations that result
from sequencing errors rather than the chemical probing
experiment.

SHAPEMAPPER 2 ACCURACY

Here we introduce ShapeMapper 2 for analysis of MaP data
(Fig. 1B) to achieve high levels of accuracy, usability, and
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FIGURE 1. MaP experiment and analysis overview. (A) Quantification of chemical probing reactivities by MaP, based on massively parallel sequenc-
ing. (B) Algorithmic steps implemented in ShapeMapper. (C) Types of observed mutations and their frequencies in MaP-based analysis of E. coli 16S
and 23S ribosomal RNA data sets collected previously under protein-free conditions using the 1M7 SHAPE reagent (Deigan et al. 2009; Siegfried et al.
2014). (D) Examples of simple and complex mutations detected in reads from the E. coli rRNA data set.

Busan and Weeks

144 RNA, Vol. 24, No. 2

 Cold Spring Harbor Laboratory Press on January 16, 2018 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


empirical performance. ShapeMapper 2 correctly detects and
makes comprehensive use of all types of mutations generated
during reverse transcription including mismatches, simple
and complex deletions and insertions, and complex sequence
changes (Fig. 1C,D). All types of mutations contribute posi-
tively to the recovery of base-pairing information, and the
highest accuracy is obtained by including all mutation types
(Fig. 2). ShapeMapper 2 handles multinucleotide mutations
with an empirically optimized separation threshold (Supple-
mental Fig. S1) and interprets ambiguously aligned muta-
tions that result from partial dissociation and reannealing
of cDNA and RNA during reverse transcription (Supplemen-
tal Fig. S2). ShapeMapper 2 achieves high read coverage with-
out sacrificing mutation rate accuracy by applying windowed
read quality trimming and a post-alignment basecall quality
filter on mutation counts and effective read depths (Supple-
mental Fig. S3).
Combined, these new features mean that ShapeMapper 2

calculates reactivity profiles that are often more accurate
than those generated by the prior version of ShapeMapper
and that are as accurate or are more accurate than those pro-
duced by careful manual analysis of capillary electrophero-
gram data (Deigan et al. 2009), the prior highest-accuracy
standard. For short RNAs, SHAPE-MaP data sets analyzed
by ShapeMapper 2 recover information about base-pairing
with an accuracy comparable to manually curated electro-
phoresis SHAPE (Supplemental Fig. S4). For long RNAs, ran-
domly primed SHAPE-MaP is more accurate than manual
electrophoresis analyses using multiple primers (Fig. 3A,B),
and enables RNA secondary structure modeling with compa-
rable accuracy (Fig. 3C).

SHAPEMAPPER 2 USABILITY

Although the major goal of ShapeMapper 2 was primarily to
achieve high accuracy in RNA modification detection, the
software also implements extensive new usability features,
runs roughly twice as fast as prior draft software, and uses
less than 1% of the disk space. ShapeMapper emphasizes
straightforward command-line execution and arguments
for simple use cases and flexibility for varied experiments
and data formats, such as experiments with multiple RNA
targets, multiple sets of input files, compressed input files,
and regions of masked sequence. STAR aligner is supported
as an alternative to Bowtie2 for improved speed with long tar-
get sequences (Langmead and Salzberg 2012; Dobin et al.
2013). ShapeMapper also automatically detects sequence var-
iants in input target sequences andmakes corrections to these
sequences (see Materials and Methods). This feature is espe-
cially useful for performing MaP on incompletely character-
ized RNAs or RNAs subject to moderate levels of mutation or
evolution.
ShapeMapper 2 calculates and plots per-nucleotide esti-

mates for standard errors in SHAPE reactivities and histo-
grams of sequencing depths and mutation rates, which are
highly useful for troubleshooting and determining data and
experiment quality (Supplemental Fig. S5). In addition,
ShapeMapper 2 performs quality-control checks (see
Materials and Methods) and integrates these into an overall
PASS/FAIL message for the user. These checks are necessarily
heuristic, since downstream analyses require different levels
of data quality and since individual RNAs have different over-
all signal levels above background as a function of their extent
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FIGURE 2. Importance of counting all mutation types. Receiver operating characteristic (ROC) curves for SHAPE-MaP reactivity profiles calcu-
lated using all mutation types or only certain types from the E. coli ribosomal RNA data set. SHAPE reactivity profiles were evaluated against re-
ported Watson–Crick base-pairing interactions identified from crystal structures (Bernier et al. 2014). True positive rate: fraction of unpaired
nucleotides with SHAPE reactivity above a given threshold; false positive rate: fraction of paired nucleotides with SHAPE reactivity above a given
threshold. True positive and false positive rates were evaluated at all possible SHAPE reactivity thresholds from the lowest value in the data set to the
highest. Inserts are far less frequent than other mutation types (see Fig. 1C), which accounts for low recovery of base-pairing information when
analyzed alone.
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FIGURE 3. Recovery of base-pairing information by the MaP experiment analyzed by ShapeMapper. (A) ROC curves for both subunits of the E. coli
ribosome comparing accuracy of ShapeMapper 2 with ShapeMapper 1 and the prior high-accuracy standard, analysis by capillary electrophoresis.
SHAPE-MaP data analyzed by ShapeMapper 2 gives both a higher true positive rate and a lower false positive rate than both ShapeMapper 1 and
manually curated electrophoresis SHAPE for any given reactivity threshold, reflected by a statistically significant increase in area under the curve (in-
set). Capillary electrophoresis data were collected previously (Deigan et al. 2009; Siegfried et al. 2014). Shaded area shows the 95% confidence interval
for the true positive rate calculated with 2000 bootstrap samples at 400 evenly spaced false positive rates. Error bars in the inset show a 95% confidence
interval for the area under the curve calculated with 2000 bootstrap samples. (∗) P = 0.05, (∗∗∗∗) P≤ 5 × 10–12. (B) SHAPE reactivity data obtained by
manually curated electrophoresis (left) and by SHAPE-MaP (right) superimposed on a representative region of the E. coli large ribosomal subunit RNA
domain II. (C) Structure modeling accuracy using Superfold (Smola et al. 2015b) and RNAstructure (Reuter andMathews 2010) with no SHAPE data
or with SHAPE data from electrophoresis or MaP readouts as soft constraints, as previously described (Deigan et al. 2009). Models were evaluated
against nonconflicting canonical Watson–Crick base-pairing interactions identified from crystal structures (Bernier et al. 2014), allowing base pairs
offset by up to one nucleotide in either direction, and excluding base pairs separated by more than 600 nt in primary sequence. Sensitivity: the fraction
of base pairs in the reference structure present in a modeled structure. PPV: positive predictive value, the fraction of modeled pairs present in the
reference structure. These sensitivity and ppv values underestimate the likely true values by ≥5%, because regions where experimental SHAPE
data are inconsistent with the reference structure have not been excluded (see Deigan et al. 2009).
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of internal structure. In general, more sequencing read depth
is always helpful, as are higher modification rates.

PERSPECTIVE

ShapeMapper 2 and MaP are a comprehensive solution to
analysis of nucleic acid chemical modification data as read
out by massively parallel sequencing. ShapeMapper 2 runs ef-
ficiently, yields reactivity profiles that are as accurate as highly
validated low-throughput electrophoresis-based methods,
and includes multiple features that facilitate application to
diverse analysis problems. It is our intent that the availability
of high-quality standardized software for MaP analysis
will allow researchers to focus their efforts on science and
discovery rather than bioinformatics pipelines. Quality-
control checks and sequence-variant correction will encour-
age the use of well-designed MaP experiments and reduce
the burden on nonexpert users, and standardized file formats
will encourage data sharing between groups. We hope that
the successful development of MaP technologies and
ShapeMapper 2 will inspire additional easily implemented
approaches enabling routine structural analyses of complex
transcriptomes, using massively parallel sequencing ap-
proaches, that are as accurate as highly curated and focused
studies of RNA model systems.

MATERIALS AND METHODS

ShapeMapper 2 implementation

The core components of ShapeMapper 2 have been rewritten using
C++11 and modern libraries including Boost. Open-source
third-party components can be installed manually or automatically
downloaded in pre-compiled binary form using the Conda package
manager (https://conda.io/docs/). A Python3.5 framework con-
trols execution of individual components, handles the locations of
their outputs, and allows parallelization through the use of named
pipes for passing intermediate data, inspired by existing work-
flow software (Berthold et al. 2008). These design elements in
ShapeMapper 2 yielded substantial speed gains and reductions
in hard drive usage. For the E. coli ribosomal RNA data set,
ShapeMapper 2 ran 40% faster and used less than 1% of the disk
space compared to draft software (Smola et al. 2015b). The addition
of unit and end-to-end tests ensures that ShapeMapper 2 pro-
duces the expected outputs and will do so through continued
development.

Documentation

Software documentation is packaged with ShapeMapper and in-
cludes overall installation and execution instructions. Also included
are file format descriptions, argument descriptions for component
executables, and detailed explanations of quality-control checks.
In-source documentation is provided for high-level Python module
source code, and browseable documentation in HTML format is
provided for low-level C++ components.

Data quality-control checks

The following quality-control checks are automatically implement-
ed in ShapeMapper 2: (i) read-depth check, at least 80% of nucleo-
tides meet a minimum sequencing depth of 5000 in all samples; (ii)
positive mutation rates above background check, at least 50% of
good-depth nucleotides have a higher mutation rate in the
SHAPE-modified sample than in the untreated sample; (iii) high
background mutation rates check, no more than 5% of good-depth
nucleotides have an untreated mutation rate above 0.05 (an unusu-
ally high number of high-background nucleotides can indicate the
presence of native modifications, sequence variants, or instrument
run failure); and (iv) number of highly reactive nucleotides check,
at least 8% of good-depth nucleotides have a modified mutation
rate above 0.006 after background subtraction. Failure to pass these
checks indicates close user scrutiny is merited.

Sequence variant correction

Small sequence changes are often present in studied RNAs when
compared to expected target sequences. ShapeMapper 2 provides
an optional preliminary stage that aligns reads to target sequences,
identifies mutations occurring with above 60% frequency, and gen-
erates corrected target sequences including all identified sequence
changes. This is appropriate for many situations in which polymor-
phisms are present within a single major RNA species, but is insuf-
ficient for mixtures of very similar RNAs. ShapeMapper 2 attempts
to warn the user of the presence of conflicting or subthreshold var-
iants. In these cases, more focused sequence characterization exper-
iments and sequence assembly with other software may be required.

Choice of sequence aligner

ShapeMapper supports both Bowtie2 and STAR software for se-
quence alignment stages (Langmead and Salzberg 2012; Dobin
et al. 2013). Read mapping percentages are typically comparable be-
tween the two aligners, and calculated reactivity profiles are virtually
identical (Supplemental Fig. S6A). For long RNA targets, STAR is
much faster than Bowtie2 (about three times as fast for the E. coli
ribosomal RNA data set, and even faster for longer target sequenc-
es). However, the performance of STAR degrades when faced with
reads from RNAs not present in reference sequences. Therefore,
we do not recommend its use for experiments involving mixtures
of unknown RNAs, unless directed gene-specific RT-PCR is per-
formed to enrich for desired targets.

Use of a denatured control

Obtaining a denatured control (Siegfried et al. 2014; Smola et al.
2015b) for a MaP experiment can be challenging (and in some cases
infeasible), uses valuable sequencing bandwidth, and can even hurt
calculated reactivity profile accuracy if RNAs are degraded or over-
amplified. For these reasons, ShapeMapper 2 does not require the
use of a denatured control. Most background mutations are ac-
counted for using mutation rates from a no-reagent control, but
when the very highest accuracy is desired, a denatured control can
provide an approximate mutation detection rate correction that im-
proves recovery of base-pairing information (Supplemental Fig.
S6B).
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DATA DEPOSITION

ShapeMapper 2 and the E. coli ribosomal RNA data set used here are
available from the corresponding author’s website, www.chem.unc.
edu/rna.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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SUPPORTING	FIGURES	

	

Figure	S1.	Multinucleotide	mutation	handling.	Optimization	of	mutation	separation	threshold.	

ShapeMapper	2	merges	nearby	mutations	and	treats	them	as	arising	from	a	single	inferred	

adduct.	For	two	mutations	to	be	taken	as	distinct,	they	must	be	separated	by	at	least	as	many	

unchanged	reference	sequence	nucleotides	as	specified	by	the	--min-mutation-

separation	parameter;	the	default	value	is	6.	For	each	separation	threshold,	area	under	the	

ROC	curve	was	calculated	over	SHAPE	reactivity	values	for	the	subset	of	A,	U,	G,	or	C	nucleotide	

positions	within	the	E.	coli	ribosomal	RNA	dataset.	SHAPE	reactivity	profiles	were	evaluated	

relative	to	the	E.	coli	ribosome	structure	from	the	Comparative	RNA	Web	Site	(Cannone	et	al.	

2002).	

	

Figure	S2.	Ambiguously	aligned	mutation	handling.	(A)	Mechanistic	model	for	the	source	of	

ambiguously	aligned	mutations.	Ambiguously	aligned	mutations	often	appear	to	result	from	

partial	dissociation	and	reannealing	of	cDNA	and	RNA	during	reverse	transcription.	This	model	

suggests	that,	during	reverse	transcription,	cDNA	and	RNA	mis-anneal	through	partial	end	

complementarity	thereby	introducing	deletions	or	insertions	in	an	ambiguous	local	sequence	

context.	This	model	implies	that	alignment	to	the	5'	side	of	ambiguous	mutations	will	more	

accurately	recover	adduct	locations	(blue	ovals)	than	will	alignment	to	the	3'	side.	(B)	Empirical	

evaluation	of	5'	side	versus	3'	side	realignment	of	ambiguously	located	mutations	using	the	E.	

coli	ribosomal	RNA	dataset.	This	analysis	indicates	that	deletions	and	insertions	more	accurately	

recover	base	pairing	information	when	aligned	to	the	5'	side	rather	than	the	3'	side	of	the	

deletion	or	insertion.	For	this	analysis,	mutation	profiles	were	created	using	only	ambiguously	

aligned	mutations.	Mutation	profiles	were	evaluated	against	the	E.	coli	ribosome	structure	from	

the	Comparative	RNA	Web	Site	(Cannone	et	al.	2002).	

	

Figure	S3.	Effect	of	windowed	read	trimming	and	post-alignment	basecall	quality	filter.	(A)	

Read	coverage	is	improved	by	windowed	read	trimming.	Data	are	from	an	mRNA	amplified	with	

targeted	RT-PCR.	For	hard	trimming	(black	line),	each	read	was	scanned	in	the	5´	to	3´	direction,	

and	downstream	basecalls	were	discarded	at	the	first	basecall	site	not	meeting	a	minimum	
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Phred	quality	score	of	30	(estimated	probability	of	incorrect	basecall	0.1%).	For	windowed	

trimming	(dashed	blue	line),	downstream	basecalls	were	discarded	once	a	window	of	five	

nucleotides	had	an	average	quality	score	below	30.	Note	that	windowed	trimming	will	allow	

inclusion	of	some	low-quality,	isolated	basecalls	(yielding	spurious	mutations),	necessitating	a	

post-alignment	basecall	quality	filter.	Effective	read	depths	after	application	of	this	filter	are	

shown	with	a	solid	blue	line.	(B)	Mutation	rates	calculated	using	window-trimmed	reads	

without	a	post-alignment	basecall	quality	filter.	Note	the	high	background	rates	around	position	

200.	(C)	Mutation	rates	calculated	after	applying	a	post-alignment	basecall	quality	filter.	This	

filter	was	implemented	for	both	read	depth	and	mutation	rate	as	follows:	Basecalls	were	

excluded	from	contributing	to	the	effective	read	depth	if	they	or	their	immediate	neighboring	

basecalls	had	a	quality	score	below	30.	Mutations	were	excluded	from	contributing	to	the	

mutation	rate	if	they	contained	or	were	neighbored	by	basecalls	with	quality	scores	below	30.	

	

Figure	S4.	Accuracy	of	ShapeMapper	and	electrophoresis	data	for	small	RNAs.	True	positives	

and	false	positives	are	defined	as	in	Fig.	2.	Electrophoresis	data	were	collected	previously,	and	

reactivity	profiles	were	evaluated	against	accepted	structure	models	as	described	(Hajdin	et	al.	

2013).	

	

Figure	S5.	Example	ShapeMapper	2	reactivity	profile	output	figure.	These	plots	are	instructive	

for	visualizing	chemical	probing	data	and	for	analyzing	and	troubleshooting	problematic	

experiments.	Data	shown	are	from	an	E.	coli	thiamine	pyrophosphate	(TPP)	riboswitch	probed	

under	ligand-bound	conditions	described	previously	(Siegfried	et	al.	2014).	Top	panel:	SHAPE	

reactivities	as	read	out	by	MaP,	and	estimated	standard	errors	shown	as	error	bars.	These	error	

bars	are	relatively	small,	indicating	a	high	level	of	confidence	in	this	reactivity	profile.	Middle	

panel:	mutation	rate	profiles	for	the	experimental	and	control	samples,	with	standard	errors	

indicated	as	lighter	shaded	areas.	Comparing	the	red	and	blue	profiles	reveals	a	mutation	rate	

signal	significantly	above	background.	Bottom	panel:	read	depth	profiles	for	each	sample.	This	

was	a	directed	primer	experiment,	and	the	relatively	flat	read	depth	profiles	indicate	a	robust	

PCR	and	minimal	or	nonexistent	off-target	primer	binding.	Effective	read	depths	are	shown	in	

lighter	colors,	and	show	the	effects	of	multinucleotide	mutation	handling	and	the	basecall	
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quality	filter.		

	

Figure	S6.	Effect	of	aligner	choice	and	of	a	denatured	control	sample.	(A)	ROC	curves	based	on	

reactivity	profiles	from	the	E.	coli	rRNA	dataset	aligned	using	STAR	or	bowtie2.	Both	aligners	

result	in	highly	accurate	profiles	with	nearly	identical	agreement	with	structure	models.	(B)	ROC	

curves	showing	SHAPE-MaP	reactivity	profile	accuracies	calculated	with	and	without	dividing	

the	background-subtracted	mutation	rates	by	the	mutation	rates	from	a	denatured	control.	

Reactivity	profiles	were	evaluated	against	the	E.	coli	ribosome	structure	from	the	Comparative	

RNA	Web	Site	(Cannone	et	al.	2002).	
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