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SUMMARY

mRNAscan fold into complex structures that regulate
gene expression. Resolving such structures de novo
has remained challenging and has limited our under-
standing of the prevalence and functions of mRNA
structure. We use SHAPE-MaP experiments in living
E. coli cells to derive quantitative, nucleotide-resolu-
tion structuremodels for 194 endogenous transcripts
encompassing approximately 400 genes. Individual
mRNAs have exceptionally diverse architectures,
and most contain well-defined structures. Active
translation destabilizes mRNA structure in cells.
Nevertheless, mRNA structure remains similar be-
tween in-cell and cell-free environments, indicating
broad potential for structure-mediated gene regula-
tion. We find that the translation efficiency of endog-
enous genes is regulated by unfolding kinetics of
structures overlapping the ribosome binding site.
We discover conserved structured elements in 35%
ofUTRs, several ofwhichwe validate as novel protein
binding motifs. RNA structure regulates every gene
studied here in a meaningful way, implying that
most functional structures remain to be discovered.
INTRODUCTION

Nearly all RNAmolecules fold into structures that are stabilizedby

networks of base-pairing interactions. These structures mediate

numerous functions, ranging from catalysis to ligand-responsive

gene regulation (Cech and Steitz, 2014). In mRNAs, it is hypoth-

esized that RNA structure broadly regulates gene translation effi-

ciency (TE) (reviewed in Kozak, 2005), and numerous complex

post-transcriptional regulatory structures have been identified

in 50 and 30 UTRs (Cech and Steitz, 2014). However, efforts to

understand the prevalence and role of mRNA structure-based

regulatory mechanisms have been hampered by long-standing

challenges in RNA structure modeling.
Recent transcriptome-wide structure-probing experiments

have implied that mRNAs are frequently structured (Del Campo

et al., 2015; Ding et al., 2014; Lu et al., 2016; Rouskin et al.,

2014; Spitale et al., 2015; Sugimoto et al., 2015; Wan et al.,

2014; Zubradt et al., 2017), but studies to date have lacked the

resolution, quantitative accuracy, and comprehensive data

coverage necessary to characterize structure at the level of indi-

vidual mRNAs (Smola et al., 2015a; Weeks, 2015). In particular,

there is no validated pathway for using dimethyl sulfate (DMS)

probing data or ligation-dependent strategies to accurately

model complex RNAs such as endogenous cellular mRNAs.

Consequently, fundamental questions such as whether individ-

ual mRNAs adopt well-defined or dynamic structures, whether

and why mRNA structure differs in vivo compared with ex vivo,

and the extent to which RNA structures regulate gene expres-

sion have remained unresolved.

Reliable structure models are essential for understanding

mRNA-regulatory mechanisms. A prime example concerns the

role, if any, RNA structure plays in tuning gene TE—the amount

of protein produced from a given mRNA transcript. TE is a pre-

cisely tuned quantity, varying over 100-fold between different

genes, and is central to how cells maintain protein homeostasis

(Li et al., 2014). Numerous studies have shown that RNA struc-

tural stability around the ribosome binding site (RBS) is a major

determinant of TE for designed genes, primarily using reporter

genes engineered to have specific compact structures in the vi-

cinity of the translation start site (Goodman et al., 2013; Kudla

et al., 2009; Salis et al., 2009). Indeed, for synthetic genes, quan-

titative models can predict and allow rational tuning of TE (Salis

et al., 2009). However, studies of native, unmanipulated endog-

enous genes using poorly validated RNA structure models have

observed poor correlations between TE and RBS structure (Boël

et al., 2016; Guimaraes et al., 2014; Li et al., 2014; Tuller et al.,

2010b). Several major studies have since proposed that TE is

regulated via different mechanisms in endogenous genes (Boël

et al., 2016; Burkhardt et al., 2017), but, in the absence of confi-

dent RNA structural models, it is premature to draw firm

conclusions.

The ability to efficiently model accurate mRNA structures

also has the potential to transform our understanding of the

role of structure in mediating more complex forms of regulation.
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To date, discovery of new functional non-coding motifs has

been largely restricted to bioinformatics and genetics strategies.

These strategies work well for identifying large, broadly

conserved structures, such as riboswitches and ribozymes

(Weinberg et al., 2015), but suffer from unacceptably high false

positive rates when trying to identify smaller or less conserved

motifs (Eddy, 2014). The prevalence of non-coding regulatory

motifs genome-wide has therefore remained controversial, but

it is likely that many functional motifs remain to be discovered.

By comparison, starting with an accurate RNA structure model

inverts the discovery problem and would potentially facilitate

highly sensitive strategies for discovering novel RNA biology.

In this study, we harness recent technological advances to

create the first ‘‘no compromises’’ RNA structure probing data-

set on a transcriptome-wide scale. This conceptual advance

allows us to dissect the mechanisms shaping in-cell RNA struc-

ture with unparalleled resolution and enables accurate structure

modeling for hundreds of mRNA transcripts. These structure

models, in turn, allow us to test key hypotheses regarding the

prevalence and function of mRNA structure. Overall, our work

establishes RNA structure as a pervasive and fundamental regu-

lator of gene expression, likely directing the expression of every

gene in E. coli.

RESULTS

High-Resolution Probing Reveals that mRNAs Adopt
Highly Diverse Structures
We used the selective 2’-hydroxyl acylation analyzed by primer

extension and mutational profiling (SHAPE-MaP) (Siegfried

et al., 2014; Smola et al., 2015b) chemical probing strategy to

obtain quantitative, single-nucleotide resolution measurements

of RNA structure across the E. coli transcriptome. SHAPE reac-

tivities are proportional to local nucleotide flexibility and, thus,

provide a direct measure of the extent of RNA structure. Using

the extensively validated reagent 1-methyl-7-nitroisatoic anhy-

dride (1M7), we probed RNA structure under three conditions:

in living E. coli cells during mid-log growth in liquid culture; in

living cells treatedwith the antibiotic kasugamycin, which inhibits

translation initiation; and in protein- and ribosome-free extracts

maintained in native-like buffers, which we refer to as cell-free

(Figure 1A).

Critically for this study, we focused on studying the subset of

native mRNAs in E. coli for which it was possible to acquire near-

complete and very high-quality chemical probing data. This

approach is thus distinct from prior transcriptome-scale studies,

which used most or all collected data but, because of data

sparseness and irregularity at the per-nucleotide level, required

most chemical probing information to be averaged over many

genes or averaged over large regions of an RNA. We applied

an unbiased whole-transcriptome sequencing strategy that

yielded high-quality structural data for 194 highly expressed

transcripts, encoding approximately 400 genes, that met strin-

gent read depth and completeness thresholds (Figure 1B; Sieg-

fried et al., 2014). These datasets are of comparable quality as

those collected in focused studies of individual RNAs (Figure 1C).

1M7 readily penetrates E. coli cells (McGinnis et al., 2015; Tyrrell

et al., 2013; Watters et al., 2016), and we resolve precise nucle-
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otide-resolution changes in SHAPE reactivity, reflective of

protein binding in non-coding RNAs in cells (Figure S1). Repro-

ducibility was confirmed by comparisons between biological

replicates (Figure S2).

We initially characterized structural variation across different

classes of RNA based on their cell-free SHAPE reactivities.

Nucleotide-resolution SHAPE data immediately revealed the

enormous diversity in RNA structure across E. coli genes (Fig-

ures 1B and 1C). This structural heterogeneity is obscured

in meta-gene analyses (Figure S2), and, clearly, no individual

RNA has a structure matching that of an averaged meta-gene.

Non-coding RNAs (ncRNAs) and pre-tRNAs have low SHAPE re-

activities (Figures 1B and 1C), consistent with these ncRNAs

possessing stable, well-defined secondary and tertiary struc-

tures. By comparison, SHAPE reactivities of coding regions

vary dramatically. Some genes exhibit very little stable structure,

and others are structured to degrees similar to that of ncRNAs

(Figures 1B and 1C). Within a given gene product category, there

is again a wide diversity in mRNA structure (Figure 1C). There is

no periodicity in the reactivity profiles of coding regions, indi-

cating that, at least in E. coli, mRNA structure is not periodic

(Figure S2). We suggest that periodicities observed in other

studies may reflect sequence biases of non-MaP-based struc-

ture-probing methods and, for structures probed in cells, sec-

ond-order effects of local ribosome-induced unfolding (STAR

Methods). Overall, mRNA structures are diverse and largely

orthogonal to gene identity and, thus, potentially able to exert

heterogeneous and transcript-specific roles in regulating gene

expression.

Translation Transiently Disrupts mRNA Structure
in Cells
Comparisons between in-cell and cell-free datasets revealed

that the cellular environment has a significant effect on mRNA

structure. Specifically, coding regions are less structured (have

higher SHAPE reactivities) in cells than under cell-free conditions

(Figure 1D), consistent with observations from prior studies (Bur-

khardt et al., 2017; Ding et al., 2014; Rouskin et al., 2014; Spitale

et al., 2015). We hypothesized that this structural destabilization

was due to ribosome-induced mRNA unfolding during transla-

tion (Takyar et al., 2005) and, therefore, examined the relation-

ship between in-cell SHAPE reactivity and gene TE, which is

proportional to average ribosome occupancy (Li et al., 2014).

Three lines of evidence support that mRNA structural disrup-

tion observed in cells is primarily due to transient unfolding

caused by active translation. First, we observe strong transcrip-

tome-wide correlations between gene TE and in-cell SHAPE

reactivity but not with cell-free SHAPE reactivity (Figure 2A).

Second, in polycistronic transcripts, in-cell SHAPE reactivities

increase precisely in highly translated genes, whereas genes

on the same transcript with low TE have comparable in-cell

and cell-free reactivities (Figure 2B). Third, compared with

normal in-cell conditions, SHAPE reactivity decreases when

translation is partially inhibited by the antibiotic kasugamycin,

and the correlation between TE and SHAPE reactivity is sharply

reduced (Figures 2A and 2B). By contrast, kasugamycin treat-

ment has no effect on the structure of ncRNAs; any structural

destabilization is constant across both in-cell conditions,
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Figure 1. E. coli RNA Structure Overview

(A) Experimental strategy.

(B) Diversity of E. coli mRNA structures reflected by variation in median gene SHAPE reactivity.

(C) Nucleotide-resolution SHAPE profiles for selected genes. Genes are labeled in (B).

(D) Comparison of in-cell and cell-free SHAPE reactivities for coding regions shows that RNA structure is destabilized in cells but clearly correlated overall.

See also Figures S1 and S2.
consistent with the action expected of chaperone proteins

such as Hfq (Figure 2C). Thus, although multiple cellular factors

can remodel RNA structure in vivo, ribosome-induced unfolding

is a primary cause of mRNA destabilization in cells, and this

destabilization correlates with the translation level of individual

genes.

Despite the destabilization caused by translation, SHAPE

reactivities under in-cell, cell-free, and kasugamycin-treated

conditions remain strongly correlated, suggesting that RNA
structure is, on average, maintained in cells (Figures 1D

and S2). A unique advantage of 1M7 SHAPE-MaP data is that

they can be used to guide accurate secondary structure

modeling using extensively validated strategies (Siegfried

et al., 2014). Structural modeling was performed for all tran-

scripts under each condition with sufficient SHAPE data, yielding

both minimum free energy structure models and base-pairing

probabilities. Consistent with the enormous diversity among

SHAPE reactivity profiles, different transcripts exhibit highly
Cell 173, 181–195, March 22, 2018 183
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Figure 2. Translation Destabilizes Coding

RNA Structure

(A) Gene median SHAPE reactivity versus trans-

lation efficiency (TE) (Li et al., 2014).

(B and C) SHAPE reactivity profiles for poly-

cistronic mRNAs. Reactivities are shown as me-

dians over 51-nt sliding windows (B). TE is shown

beneath each gene. In-cell SHAPE reactivities

increase specifically in highly translated genes.

Kasugamycin treatment partially abrogates this

increase in mRNAs, but (C) has no effect on non-

coding RNAs glmZ and gcvB.

(D) Fraction of high-confidence (pairing probability

> 98%) base pairs spanning greater than 50 nu-

cleotides in cell-free and in-cell coding regions as

a function of TE. Long-range base pairs are spe-

cifically disfavored in highly translated genes.

(E) Percentages of base pairs shared in minimum

free energy RNA structure models. Boxes indicate

the interquartile range (IQR), andwhiskers indicate

data within 1.5 3 IQR of the top and bottom

quartiles.

See also Figure S3.
variable degrees of structure (Figure S3). For some transcripts,

50% of nucleotides form high-probability base pairs, indicating

that the mRNA adopts a well-defined global structure. For other

transcripts, only �10% of nucleotides form well-defined base

pairs, indicating that the mRNA structure is highly dynamic.

In-cell structure models have �20% fewer base pairs than cell-

free and kasugamycin structure models (Figure S3), consistent

with translation-induced structural destabilization. Highly trans-

lated coding regions are selectively depleted of high-probability

long-range base pairs in cells, implying that ribosome-induced

unfolding specifically disfavors long-range pairing (Figure 2D).

Nevertheless, more than 60% of minimum free energy and

more than 70% of high-probability base pairs are shared be-

tween in-cell, cell-free, and kasugamycin structure models (Fig-

ures 2E and S3), and most structural differences are localized to

dynamic regions (STARMethods). By contrast, structure models

predicted without SHAPE data deviate significantly from data-

driven models (Figures 2E and S3).

In sum, RNA structure is destabilized in the cellular environ-

ment by active translation such that translation disfavors long-

range base pairing. Nonetheless, in-cell RNA structure does

not appear to undergo radical changes, leaving intact the poten-

tial for RNA structure to regulate cellular processes.
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mRNA Structure Globally Tunes
Gene TE
Our SHAPE-directed structure models

provide an unparalleled resource for

exploring hypotheses regarding the

cellular functions of mRNA structure.

One of the most important potential func-

tions of mRNA structure is as a regulator

of gene TE. Seminal studies of simplified

model genes have shown that RNA struc-

tures that occlude the Shine-Dalgarno

sequence and beginning of the coding
sequence—collectively termed the RBS—impede loading of

the gene into the mRNA binding channel of the 30S ribosomal

subunit and, therefore, reduce TE (de Smit and van Duin, 1990;

Goodman et al., 2013; Kudla et al., 2009; Salis et al., 2009). In

contrast, studies of authentic native genes have reported that

RBS structure is only weakly correlated with TE (Boël et al.,

2016; Guimaraes et al., 2014; Li et al., 2014; Tuller et al.,

2010b). More recently, it has been suggested that average struc-

ture across the entire coding sequence (CDS), rather than RBS

structure, is the key determinant of TE for endogenous native

genes (Burkhardt et al., 2017). Importantly, however, all of these

studies relied on naive prediction or unvalidated RNA structure-

modeling strategies.

Understanding TE in endogenous polycistronic transcripts is

complicated by the phenomena of translational coupling, where

translation of a downstream gene is dependent on and coupled

to translation of upstream genes (Kozak, 2005). Because the

mechanism of translation initiation likely differs in translationally

coupled genes, we excluded possible translationally coupled

genes from our analysis (Figure 3A). Genes were required to be

either the first gene on the transcript or have more than a 2-fold

different TE than the immediate upstream gene. The distinct role

of RNA structure in translational coupling is discussed later.
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Figure 3. RBS Structure Regulates Translation

(A) Identification of potential translationally coupled genes, which were excluded from TE analysis.

(B) Equilibrium unfolding model for mRNA loading into the 30S mRNA channel (top) and correlation between TE and RBS DGunfold for translationally uncoupled

genes (bottom). n = 157.

(C) Kinetic unfolding model for mRNA loading into the 30S subunit (top) and correlation between TE and RBS DGz
unfold for translationally uncoupled genes

(bottom).

(D) Correlation between gene TE and DGz
unfold computed for different coding sequence windows. The indicated significance cutoff corresponds to p z 0.05

(two-sided Wald test; precise cutoff varies between datasets).

(E) Example of two high TE genes with structured CDSs in-cell. Base pairs are shown as arcs colored by pairing probability. Both genes have unstructured RBSs

and, hence, are predicted to have high TE by the RBS kinetic unfolding model (C) but not by models considering CDS structure.

See also Figure S4.
We used our SHAPE-directed structure models to examine

two alternative biophysical mechanisms through which RBS

structure may regulate mRNA loading onto the 30S subunit

during translation initiation. If loading is an equilibrium process,

then TE should vary with the equilibrium free energy of unfold-

ing the RBS structure (DGunfold) (Figure 3B; Salis et al., 2009).

Alternatively, ribosome loading could be a non-equilibrium pro-

cess, depending on a kinetic competition between RBS unfold-

ing versus dissociation of the mRNA from the 30S subunit (de

Smit and van Duin, 2003). In this kinetic scenario, TE should

vary with the non-equilibrium free energy of unfolding, repre-

sentative of the unfolding transition state, DGz
unfold (Figure 3C).

Both DGunfold and DGz
unfold can be computationally approxi-

mated but will only be accurate if the underlying RNA structure

model is also accurate. Analysis of our SHAPE-directed models

revealed that TE is weakly correlated with the equilibrium

DGunfold (r = –0.37) but strongly anticorrelated with DGz
unfold

(r = –0.64), indicating that TE is strongly dependent on RBS un-

folding kinetics (Figures 3B and 3C and S4; STAR Methods).

Significantly, this r = –0.64 correlation between RBS structure

and TE is comparable with that observed in prior studies of
simplified engineered genes (Goodman et al., 2013; Kudla

et al., 2009; Salis et al., 2009), suggesting that native endoge-

nous genes regulate TE via similar mechanisms. (Note that prior

studies have not attempted to resolve kinetic versus equilibrium

mechanisms; Discussion.) This strong correlation is not

inherent to our gene set. When we repeated our analysis using

structures predicted without SHAPE data, we observed only a

weak correlation between DGz
unfold and TE (r = –0.33; Fig-

ure S4), exactly consistent with prior studies of endogenous

genes (Boël et al., 2016; Li et al., 2014). Thus, good structural

models, as obtained by SHAPE-directed modeling, are essen-

tial for understanding the relationship between RNA structure

and gene expression in native mRNAs and, in this case, inform

a new understanding of regulation of native genes in E. coli.

It has also been proposed that RNA structures in the CDS

can affect TE, potentially by modulating the rate of translation

elongation (Burkhardt et al., 2017). We therefore examined

the relationship between TE and DGz
unfold for windows

downstream of the RBS (Figure 3D). DGz
unfold is weakly corre-

lated with gene TE over the first 150 nucleotides of the CDS

(r z–0.3; Figure 3D), suggesting that stable structures at the
Cell 173, 181–195, March 22, 2018 185
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Figure 4. Reporter Gene Validation of the

RBS Kinetic Unfolding Model

(A) Example parent endogenous transcript and

fusion to GFP. Lengths of the fused non-coding

and CDS segments are indicated. In-cell struc-

tures are shown as pairing probability arcs as in

Figure 3. The RBS is highlighted in brown, with the

computed DGz
unfold shown underneath.

(B) Example fusions for endogenous genes pre-

dicted to have moderate and low DGz
unfold. Note

that, despite being embedded in a larger hairpin

structure, the dapF RBS is located in a relatively

unstructured loop with moderate DGz
unfold and,

hence, is predicted to have moderate TE by the

kinetic unfolding model.

(C) Fusion genes recapitulate the predicted trend

between expression and RBS DGz
unfold. Protein

expression was measured as GFP fluorescence

normalized to a red fluorescent protein (RFP)

reference encoded on the same plasmid (nGFP).

Genes shown in (A) and (B) are highlighted in red.

Data represent the mean ± SD from three repli-

cates. n = 29. The p value was computed by two-

sided Wald test.
50 CDS can reduce TE, and consistent with this region playing

an outsized role in determining the rate of translation elongation

(Tuller et al., 2010a). However, the correlation is much weaker

than that observed between RBS structure and TE. In addition,

there is no correlation between TE and DGz
unfold past this initial

50 region (Figure 3D). Comparable results were observed for the

equilibrium DGunfold of CDS structure. Although translation de-

stabilizes CDS structure, highly translated genes can be highly

structured, and we identified many highly translated genes with

stable, well-defined CDS structures (Figure 3E). Thus, our anal-

ysis indicates that, for the genes in this study, RNA structure

primarily affects TE at the stage of translation initiation at the

RBS, with TE relatively unaffected by downstream CDS

structure.

To directly validate the kinetic RBS unfolding model of endog-

enous TE, we constructed translational fusions between endog-

enous genes and a GFP reporter (Figure 4). To preserve

structures observed in our SHAPE-directedmodels, we included

both the endogenous RBS and flanking regions encompassing

self-contained structural elements upstream and downstream

of the endogenous start codon. The TE of each fusion was

then assessed as the normalized GFP fluorescence measured

by flow cytometry. Critically, GFP expression was strongly anti-

correlated with the expected DGz
unfold of the RBS (r = –0.55; Fig-

ure 4C), supporting the fundamental importance of RBS

structure in regulating TE. Consistent with the importance of

the kinetic unfolding mechanism, GFP expression was less

correlated with (equilibrium) DGunfold (r = �0.48). Thus, even

though native endogenous sequences are structurally complex

and highly heterogeneous relative to each other, with accurate

secondary structuremodels, it is possible to detect a strong rela-

tionship between RBS structure and TE, and this relationship is

conserved across both native endogenous genes and heterolo-

gous reporter systems.
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mRNA Structure Mediates Translational Coupling
Genes in polycistronic transcripts are often translationally

coupled, meaning that translation of a downstream gene is

modulated by translation of the preceding gene. Studies of

several model transcripts have indicated that RNA structures

can mediate translational coupling by acting as conformational

switches that mask the RBS until unfolded by upstream

ribosomes (Figure 5A; Kozak, 2005). Indeed, analysis of the

‘‘potentially translationally coupled’’ genes excluded from our

analyses above revealed a much weaker relationship between

RBS DGz
unfold and TE (r = –0.37; data not shown), supporting

that translationally coupled genes are regulated by different

mechanisms. We therefore used our structure models to investi-

gate the relevance of a structural switching mechanism tran-

scriptome-wide.

We were immediately able to identify a potential broad role for

RNA structure in mediating translational coupling. When adja-

cent genes have similar TEs, the RBS of the downstream gene

tends to be base-paired to the coding sequence of the upstream

gene (Figure 5B). Such ‘‘gene-linking’’ structures will be unfolded

by movement of the ribosome during translation of the upstream

gene, conditionally unmasking the downstream RBS (Figure 5A).

In comparison, adjacent genes with different TEs tend to have

self-contained structures with few gene-linking pairs, and,

hence, the structural accessibility of the RBS should be relatively

unperturbed by upstream translation (Figure 5C). Performing this

analysis transcriptome-wide, we find that adjacent genes with

many linking base pairs are significantly more likely to have

similar TEs than those with few linking pairs (p = 9 3 10�5;

Figure 5D). Thus, structural coupling between adjacent genes

is a specific indicator of similar TEs, consistent with RNA

structure mediating translational coupling. By comparison, we

found that short intergenic distance is not a significant predictor

of genes having similar TEs, even though intergenic distance is
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Figure 5. RNA Structure Mediates Transla-

tional Coupling

(A) Model of structure-mediated translational

coupling in which upstream translation unfolds

otherwise inhibitory RNA structures.

(B and C) Representative genes possessing many

(B) or few (C) gene-linking base pairs. In-cell struc-

tures are shown as pairing probability arcs as in

Figure 3. TE is shown beneath each gene.

(D) In-cell transcriptome-wide analysis reveals that

having many gene-linking base pairs is a significant

predictor that adjacent genes will have similar TEs.

Gene pairs were classified as having few versus

many linking pairs when they were in top and bot-

tom quintiles of all gene pairs, respectively. The p

value was computed by two-tailed Mann-Whitney

U test. Boxes indicate the IQR, and whiskers indi-

cate data within 1.5 3 IQR of the top and bottom

quartiles.

See also Figure S5.
typically thought to be a hallmark of translational coupling

(p = 0.1; Figure S5). Indeed, we observe multiple cases where

structure appears to mediate translational coupling of genes

separated by more than 30 nucleotides (Figure S5). To further

validate that gene-linking structures mediate translational

coupling, we identified the top quintile of genes with the most

gene-linking base pairs. Strikingly, 24% (8 of 33) of these

most-linked genes, identified from RNA structure data alone,

are known to be translationally coupled. RNA structure has

been specifically shown to mediate translational coupling of

rplT (Lesage et al., 1992), whereas rpsK and rplD (Figure 5B)

and rpsD, rplF, rpmD, rplW, and thrB have been shown to

be translationally coupled but via unknown mechanisms (Mat-

theakis and Nomura, 1988; Thomas et al., 1987; Yates and

Nomura, 1980). We again note that high-quality structural data

are essential—the relationship between structural coupling and

TE is lost for structure predictions made in the absence of

SHAPE data (p = 0.09). Combined, our data show that RNA

structure-based switches comprised of gene-linking base pairs

frequently and selectively couple translation of adjacent genes

in E. coli.

Discovery and Validation of Novel RNA-Regulatory
Motifs
Prior work has shown that experimentally supported RNA struc-

ture models can be used to identify novel RNA-regulatory ele-
ments de novo based on the fact that

regulatory elements often have particularly

well-determined structures (Mauger et al.,

2015; Siegfried et al., 2014). We therefore

searched for motifs in UTRs and intergenic

regions (IGRs) with uncommonly stable

(low SHAPE reactivity) and well-defined

(low entropy) secondary structures (Fig-

ure 6A). Significantly, this unbiased low-

SHAPE/low-entropy search returned 9 of

13 (69%) of the known functional RNA mo-
tifs covered by our SHAPE data. The majority of these known

motifs are ribosomal protein autoregulatory elements (RAREs)

located upstream of ribosomal protein genes. RAREs function

by binding excess ribosomal protein to inhibit translation initia-

tion, creating a feedback loop that controls the ratio of protein

to rRNA. Interestingly, our in-cell SHAPE data reveal that many

of these RAREs are only partially formed or adopt alternative

structures in the absence of bound protein, implying that RNA

dynamics are important for their regulatory function (Figure S6;

Table S1). Critically, the high sensitivity of the low-SHAPE/low-

entropy strategy for finding known elements strongly supports

that structural data can be used to identify novel functional ele-

ments de novo.

Overall, we identified 58 low-SHAPE/low-entropy structures

located in 51 (35%) of the 147 searched UTRs and IGRs. 49 of

these motifs are uncharacterized and represent compelling

novel regulatory motif candidates. We substantiated the poten-

tial functions of these motifs by three approaches. First, for

non-CDS-overlapping motifs, phylogenetic analysis revealed

that 82% are evolutionarily conserved, with many conserved in

100% of enterobacterial species (Figure 6B; Table S1; see also

Figure S7). Second, literature searches readily revealed that 23

of these uncharacterized structures (47%) are located in

genomic regions with either strong or moderate evidence of

biochemical function (Figure 6B; Table S1). Finally, for three

candidate RAREs newly identified as low-SHAPE/low-entropy
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Figure 6. Structure-Based Discovery of Novel RNA-Regulatory Motifs

(A) Candidate motifs are identified in non-coding regions based on the ability to form stable, well-defined structures, as defined by low SHAPE reactivity and low

structural entropy. The low-SHAPE/low-entropy region is emphasized with gray shading.

(B) Conservation of identified low-SHAPE/entropy structures in enterobacteria and evidence of function from prior literature (n = 58; Table S1).

(C–E) Identification and validation of the L13-bindingmotif, C5-binding motif, and L9/L28-binding motif. For eachmotif, the defining low-SHAPE/entropy region is

highlighted in dark gray on the transcript model, with expansions to incorporate surrounding sequences shown in light gray (top). The two secondary structures

shown illustrate SHAPE probing data superimposed on the structure of the 50 UTR construct used for validation and the consensus structure labeled by percent

conservation in enterobacteria. Gels show electrophoretic mobility shift assays for the designated protein-RNA interactions. In (E), the structure of the 23S rRNA

(legend continued on next page)
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motifs, we validated functional RNA-protein interactions by

electrophoretic mobility shift assays. We discuss these new

RAREs below and provide detailed discussions of all 58 motifs

in Table S1.

Our search identified a highly conserved multi-hairpin struc-

ture in the 50 UTR of the rplM-rpsI transcript that encodes ribo-

somal proteins L13 and S9 (Figure 6C). We hypothesized that

this structure constituted a novel RARE, and, indeed, a contem-

poraneous study found that L13 translationally represses the

rplM-rpsI operon in vivo (Aseev et al., 2016). No RNA structure

or mechanistic information have been reported for the putative

L13-binding motif. The 50 UTR and CDS form five well-defined

hairpins under cell-free conditions; however, in cells, the H1

and H2 hairpins are moderately destabilized, and the H4 hairpin,

which sequesters the start codon, is completely destabilized

(data not shown). The L13 protein specifically bound to an

RNA containing helices H1–H5 (Figure 6C; KD = 390 ± 60 nM),

but no binding was observed to a truncated construct containing

H2–H4 (Figure 6C). Thus, L13 binds RNA containing the H1–H5

hairpins and likely inhibits rplM translation by stabilizing H4

and occluding access to the RBS. L13 has also been shown to

negatively regulate translation of the downstream rpsI gene

(Aseev et al., 2016). Our structure models revealed that rpsI is

structurally linked to rplM (Figure 6C), indicating that co-regula-

tion of these two genes is likely achieved via RNA structure-

mediated translational coupling.

Another well-defined structure occurs in the 50 UTR of the

rpmH-rnpA transcript, which encodes ribosomal protein L34

and protein C5, the protein component of RNase P (Figure 6D).

Helix H2 is highly conserved upstream of the rpmH-rnpA operon

in enterobacteria, and the conserved juxtaposition of these two

genes suggests that the regulatory circuits governing RNase

P and ribosome biosynthesis are co-regulated. C5 binds tightly

to the rpmH-rnpA50 UTR (KD=94±9nM)but not to amutant lack-

ing the H2 hairpin (Figure 6D). The increased electrophoretic

mobility of the C5-bound UTR is consistent with protein binding

inducing a global conformational change in the UTR structure

(Ryder et al., 2008). Intriguingly, the H2 hairpin is similar to

C5-binding hairpins identified by in vitro selection (Lee et al.,

2002). Because the L34 coding sequence lies between the

50 UTR and the coding sequence for C5, binding of C5 likely reg-

ulates the expression of both L34 and C5, with function at either

the transcriptional or translational stage. To our knowledge, this

is the first example of a ‘‘moonlighting’’ regulatory function forC5.

Finally, we identified a well-defined motif in the 50 UTR of the

rpmB-rpmG operon, encoding ribosomal proteins L28 and L33.

Remarkably, this highly conserved three-helix junction motif

shows strong structural similarity to the 23S rRNA binding sites

for both L28 and ribosomal protein L9, the latter of which is

encoded on a separate operon (Figure 6E). Prior studies failed

to observe autoregulation of the rpmB-rpmG operon by L28 or

L33, but the potential involvement of L9 was not explored (Aseev

et al., 2016; Maguire and Wild, 1997). The rpmB-rpmG 50 UTR
binding site for ribosomal proteins L9 and L28 is also shown (PDB: 4YBB). In (C), L

800 nM for the H2–H4 construct. In (D), C5 varied from 10 to 240 nM. In (E), L9 an

models are not drawn to scale.

See also Figure S8 and Table S1.
folds into several conformations at high salt concentrations, as

visualized by non-denaturing gel electrophoresis, one of which

has exceptionally slow mobility suggestive of a defined tertiary

structure (Figures 6E and S8). Strikingly, L9 specifically binds

this low-mobility conformation (KD z 300 nM), and L9 and L28

can jointly bind the slow conformation (Figures 6E and S8). L28

and L33 also bind independently to the UTR without discrimi-

nating between the low- and high-mobility states. L9 and L33

binding are mutually exclusive, with L9 competing off L33 (Fig-

ure S8). Interactions are specific to the native UTR because dele-

tion of helix H3 eliminates the low-mobility conformation and,

consequently, L9 and L28 binding (Figure 6E). This motif, identi-

fieddenovoby structure-informeddiscovery, reveals remarkable

complexity and likely constitutes a novel RARE that integrates

regulation of L9, L28, and L33 across multiple operons.

In sum, phylogenetic analysis, prior functional genetics

studies, and our biochemical validation support clear functional

roles for many of the novel RNA motifs identified by our study

(Figure 6). With limited exception, the motifs identified here

have remained structurally uncharacterized, and 31% of the mo-

tifs derive from fully novel loci not even suggested by large-scale

bioinformatic predictions (Table S1). Thus, our analysis indicates

that, with high-quality probing data, it is possible to discover

novel RNA regulatory motifs de novo based on RNA structure in-

formation alone.

DISCUSSION

High-throughput structure probing experiments have the poten-

tial to transform our understanding of the diverse cellular func-

tions of RNA structure. Many studies to date have emphasized

rapid and large-scale data acquisition, with less emphasis

placed on the quality or completeness of data or on the quality

of the resulting structure models. Such strategies place funda-

mental limits on the ability to resolve individual RNA structures,

which is essential for understanding biological mechanisms. In

the present work, we took an alternative approach by performing

extensive structure-probing experiments and then curating

these data to focus on transcripts for which we could obtain

nearly complete, quantitative, and nucleotide-resolution profiles

(Figure 1). For the roughly 400 genes examined here, our struc-

ture probing data are comparable in quality to prior highly

focused studies of individual RNAs. The completeness and qual-

ity of these SHAPE data make it possible to derive realistic struc-

turemodels for individual RNAs, for individual motifs within these

RNAs, and for per-nucleotide structure changes within individual

motifs. Ultimately, we were able to discover and validatemultiple

newmechanisms by which RNA structure governs gene expres-

sion in E. coli (Figure 7).

The most fundamental result of our study is that individual

mRNAs have highly idiosyncratic architectures; in essence,

each mRNA has its own distinctive structural ‘‘personality.’’

Previous studies have presented evidence that mRNAs are
13 concentrations varied from 22 to 800 nM for the H1–H5 construct and 288 to

d L28 concentrations were 500 nM. –, no protein. Note that CDSs in transcript
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Figure 7. Mechanisms Identified in This

Study through which RNA Structure Regu-

lates Gene Expression

The function of identified novel non-coding motifs

is supported by direct binding studies, evolu-

tionary conservation, and literature cross-refer-

ences. The function of RBS structure in regulating

gene TE is supported by transcriptome-wide

analysis and reporter gene assays. The role of

gene-linking structures in mediating translational

coupling is supported by transcriptome-wide

analysis and literature cross-references.
frequently structured in cells but were unable to resolve this

functionally important variability or distinguish the extent to

which RNA structure differs between in-cell and cell-free envi-

ronments (Del Campo et al., 2015; Ding et al., 2014; Lu et al.,

2016; Ramani et al., 2015; Rouskin et al., 2014; Spitale et al.,

2015; Wan et al., 2014; Zubradt et al., 2017). Comparisons be-

tween cell-free, in-cell, and kasugamycin-treated SHAPE data-

sets reveal that translation destabilizes RNA structure in highly

translated genes and reduces long-range base pairing in these

genes (Figure 2). Importantly, however, RNA structure is largely

conserved in cells, leaving intact the potential for sequence-en-

coded structures to mediate gene regulation.

Significantly, our high-quality structural models allow us to

address long-standing controversies regarding how translation

is regulated in native endogenous genes. Studies of simplified

engineered genes have shown that TE is strongly related to

RBS structure (Goodman et al., 2013; Kudla et al., 2009; Salis

et al., 2009), but studies of native genes have failed to recapitu-

late this relationship (Boël et al., 2016; Guimaraes et al., 2014; Li

et al., 2014; Tuller et al., 2010b). Thus, it has remained unclear

whether endogenous genes are regulated by alternative, still un-

known mechanisms or, rather, that the role of RBS structure has

been obscured by inaccuracies when modeling structures of

native genes. Our work strongly supports the latter conclusion:

TE is regulated by RBS structure in similar ways for both engi-

neered and endogenous genes, but endogenous genes have

highly diverse and much more complex structures. We explicitly

validate this commonality by transplanting idiosyncratic endog-

enous RBS sequences in front of exogenous GFP reporters and

recover a strong relationship between RBS structure and gene

expression (Figure 4). This conclusion differs from that of a

recent study (Burkhardt et al., 2017) that interpreted strong cor-

relations between TE and the DMS reactivity of endogenous

genes as evidence that TE is regulated by coding sequence

structure. Our analysis indicates that TE is only weakly correlated

with DGz
unfold in coding regions (Figure 3D). In addition, given

that correlations between SHAPE reactivity and TE are best ex-

plained by ribosome-mediated unfolding of the CDS (Figure 2),

reduced CDS structure is most likely a consequence rather

than a cause of high TE. Overall, the model that endogenous

genes rely on RBS structure to tune TE explains the unique

evolutionary constraint of RBS-adjacent sequences (Bentele

et al., 2013; Tuller et al., 2010a) and unifies our understanding

of translation regulation for synthetic and endogenous genes.

Again, these broad insights into the regulation of TE require

robust models of the underlying mRNA structure.
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Our data also allow us to distinguish whether translation initi-

ation depends on kinetics versus equilibrium unfolding of RBS

structure. This distinction is essential for understanding the

multi-step, highly regulated mechanism of translation initiation

and, correspondingly, how translation is dynamically reprog-

rammed in response to cellular stimuli such as heat shock.

The possibility of a kinetic mechanism was first proposed

from a theoretical analysis showing that, at equilibrium, the life-

time of the unfolded state for a well-structured RBS is much too

short to bind a 30S subunit (de Smit and van Duin, 2003). This

limitation can be overcome if the 30S subunit first binds non-

specifically to an mRNA and transiently ‘‘stands by’’ until the

RBS unfolds. The importance of standby sites in translation

initiation is now well supported (Espah Borujeni et al., 2014;

Studer and Joseph, 2006). However, whether translation initia-

tion depends on RNA unfolding kinetics has been essentially

untestable because of the difficulty of modeling long-range

RNA structures; not modeling such long-range structures effec-

tively hides differences between equilibrium versus kinetic un-

folding mechanisms (STAR Methods). The kinetic unfolding

model explains roughly 40% of the observed TE variation in

endogenous genes compared with only 13% explained by

the equilibrium unfolding model. Necessary approximations

made in our analysis leave open the possibility of contributions

from an equilibrium mechanism (STAR Methods), but overall,

our data imply that the kinetic mechanism predominates.

When combined with accurate mRNA secondary structure

models, incorporation of the kinetic mechanism into holistic

biophysical models of translation is likely to yield further im-

provements in the ability to predict and rationally tune gene

TE (Espah Borujeni et al., 2017).

Our work also reveals that large-scale RNA structure probing

and modeling, when sufficiently accurate, make it possible

to discover and understand complex post-transcriptional regula-

tory mechanisms. We found that searching for well-defined and

highly structured RNA elements (low-SHAPE/low-entropy mo-

tifs) identifies 70% of previously known regulatory structures.

The few known structuresmissed by our analysis consist of small

and dynamic RNA motifs that present challenges for any detec-

tion strategy. This initial finding supports the hypothesis that

many functional motifs have been evolutionary selected to

have uniquely well-defined structures relative to the genetic

background and that searching for such motifs will be useful

for identifying novel regulatory elements. Strikingly, searching

for low-SHAPE/low-entropy motifs across all non-coding re-

gions in our dataset revealed well-structured motifs occur in



35% of UTRs and IGRs. The large majority of these motifs are

well-conserved, and many overlap functional sites of protein

binding, RNase processing, transcription termination, and small

RNA binding, strongly implying involvement of RNA structure in

diverse post-transcriptional regulatory processes (Table S1).

We specifically validated the protein binding activity for three

regulatory elements upstream of the ribosomal protein genes

rplM, rpmB, and rpmH. The discovery of novel RNA motifs is

particularly significant given that our analysis was limited to

highly expressed housekeeping genes in E. coli, which represent

some of the most intensively interrogated and finely parsed ge-

netic loci in biology. Although outside the scope of our current

study, the 46 other novel structures identified by ourmotif search

represent compelling targets for future functional studies

(Table S1); for example, complex motifs were found in front of

essential genes rpsT (ribosomal protein S20), csrA (carbon stor-

age regulator A, CsrA), rho (Rho terminator factor), rpoB and

rpoC (RNA polymerase subunits b and b0), and accA and accB

(subunits of acetyl-coenzyme A [CoA] carboxylase).

More important than any individual conclusion, our data

collectively imply that regulation by RNA structure is much

more common than previously appreciated. Indeed, either by

tuning TE via RBS structure or using non-coding structure to

achieve more complex differential regulation, every single gene

examined here is regulated in ameaningful way by RNA structure

(Figure 7). Our dataset covers roughly 8% of the E. coli genome,

suggesting that the majority of RNA-regulatory structures and

functions have yet to be discovered.
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(2012). An in silico model for identification of small RNAs in whole bacterial ge-

nomes: characterization of antisense RNAs in pathogenic Escherichia coli and

Streptococcus agalactiae strains. Nucleic Acids Res. 40, 2846–2861.

Podkovyrov, S., and Larson, T.J. (1995). Lipid biosynthetic genes and a ribo-

somal protein gene are cotranscribed. FEBS Lett. 368, 429–431.

Post, D.A., Hove-Jensen, B., and Switzer, R.L. (1993). Characterization of the

hemA-prs region of the Escherichia coli and Salmonella typhimurium chromo-

somes: identification of two open reading frames and implications for prs

expression. J. Gen. Microbiol. 139, 259–266.

Powell, B.S., Court, D.L., Inada, T., Nakamura, Y., Michotey, V., Cui, X., Reizer,

A., Saier, M.H., and Reizer, J. (1995). Novel proteins of the phosphotransferase

system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr af-

fects growth on organic nitrogen and the conditional lethality of an erats

mutant. J. Biol. Chem. 270, 4822–4839.

Pulvermacher, S.C., Stauffer, L.T., and Stauffer, G.V. (2008). The role of the

small regulatory RNA GcvB in GcvB/mRNA posttranscriptional regulation of

oppA and dppA in Escherichia coli. FEMS Microbiol. Lett. 281, 42–50.

Ramani, V., Qiu, R., and Shendure, J. (2015). High-throughput determination of

RNA structure by proximity ligation. Nat. Biotechnol. 33, 980–984.

Reuter, J.S., and Mathews, D.H. (2010). RNAstructure: software for RNA sec-

ondary structure prediction and analysis. BMC Bioinformatics 11, 129.

Rio, D.C., Ares, M., Jr., Hannon, G.J., and Nilsen, T.W. (2011). RNA: a labora-

tory manual (Cold Spring Harbor: Cold Spring Harbor Laboratory Press).

Rivas, E., and Eddy, S.R. (2001). Noncoding RNA gene detection using

comparative sequence analysis. BMC Bioinformatics 2, 8.

Rivas, E., Klein, R.J., Jones, T.A., and Eddy, S.R. (2001). Computational iden-

tification of noncoding RNAs in E. coli by comparative genomics. Curr. Biol. 11,

1369–1373.

Rivera-León, R., Green, C.J., and Vold, B.S. (1995). High-level expression of

soluble recombinant RNase P protein from Escherichia coli. J. Bacteriol.

177, 2564–2566.

Romeo, T., Vakulskas, C.A., andBabitzke, P. (2013). Post-transcriptional regu-

lation on a global scale: form and function of Csr/Rsm systems. Environ. Mi-

crobiol. 15, 313–324.

Rouskin, S., Zubradt, M., Washietl, S., Kellis, M., and Weissman, J.S. (2014).

Genome-wide probing of RNA structure reveals active unfolding of mRNA

structures in vivo. Nature 505, 701–705.
194 Cell 173, 181–195, March 22, 2018
Ryder, S.P., Recht, M.I., and Williamson, J.R. (2008). Quantitative Analysis of

Protein-RNA Interactions by Gel Mobility Shift. In RNA-Protein Interaction Pro-

tocols, R.-J. Lin, ed. (Humana Press), pp. 99–115.

Saito, K., and Nomura, M. (1994). Post-transcriptional regulation of the str

operon in Escherichia coli. Structural and mutational analysis of the target

site for translational repressor S7. J. Mol. Biol. 235, 125–139.

Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muñiz-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli K12 MG1655 Bo Li, UNC, Chapel Hill RRID: SCR_002433

E. coli TOP10 Invitrogen Cat# C404010

E. coli BL21-AI Invitrogen Cat# C607003

Chemicals, Peptides, and Recombinant Proteins

1-methyl-7-nitroisatoic anhydride (1M7) (Steen et al., 2011) CAS: 73043-80-8

Kasugamycin Sigma CAS: 19408-46-9

SuperScript II reverse transcriptase Invitrogen Cat# 18064014

T7 RNA polymerase (Rio et al., 2011) N/A

E. coli L9 protein This paper N/A

E. coli L28 protein This paper N/A

E. coli L33 protein This paper N/A

E. coli C5 protein This paper N/A

E. coli L13 protein This paper N/A

rpmB WT RNA This paper N/A

rpmB H1insA-GC RNA This paper N/A

rpmB DH3 RNA This paper N/A

rpmB WTtrunc RNA This paper N/A

rplM H1-H5 RNA This paper N/A

rplM H2-H4 RNA This paper N/A

rpmH WT RNA This paper N/A

rpmH DH2 RNA This paper N/A

Critical Commercial Assays

Bacterial Ribo-Zero rRNA removal kit Illumina Cat# MRZMB126

NEBNext second strand synthesis module NEB Cat# E6111S

NexteraXT library prep kit Illumina Cat# FC-131-1024

Isothermal assembly cloning kit NEB Cat# E5520S

Deposited Data

Raw SHAPE-MaP sequencing reads This paper https://www.ebi.ac.uk/ena/data/view/

PRJEB23974

E. coli K12 MG1655 reference genome, U00096.2 GenBank https://www.ncbi.nlm.nih.gov/nuccore/

U00096.2

Conway et al. transcript annotations (Conway et al., 2014) Table S4 at http://mbio.asm.org/content/

5/4/e01442-14.full

RegulonDB transcript annotations (Salgado et al., 2013) http://regulondb.ccg.unam.mx

RefSeq bacterial genomes RefSeq ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/

bacteria/assembly_summary.txt

Oligonucleotides

Oligos used for construction of pTrc-TE plasmid,

see Table S4

This paper N/A

Oligos used for RNA transcription, see Table S5 This paper N/A

Recombinant DNA

Plasmid: pTrcHis A Invitrogen Cat# V36020

Plasmid: pTrc-TE This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmids: pTrc-TE with inserted leader sequences,

see Table S3.

GenScript, this paper N/A

Plasmid: pET-29a(+)-rplI GenScript, this paper N/A

Plasmid: pET-29a(+)-rplM GenScript, this paper N/A

Plasmid: pET-29a(+)-rpmB GenScript, this paper N/A

Plasmid: pET-29a(+)-rpmG GenScript, this paper N/A

Plasmid: pET-29a(+)-rnpA GenScript, this paper N/A

Software and Algorithms

Bowtie2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

RNAstructure (v5.8) (Reuter and Mathews, 2010) https://rna.urmc.rochester.edu/

RNAstructure.html

SuperFold (Siegfried et al., 2014; Smola

et al., 2015b)

http://www.chem.unc.edu/rna/software.html

ShapeMapper (v1) (Siegfried et al., 2014; Smola

et al., 2015b)

http://www.chem.unc.edu/rna/software.html

Motif finder algorithm This paper http://www.chem.unc.edu/rna/software.html

Homolog search algorithm This paper http://www.chem.unc.edu/rna/software.html

FlowJo FlowJo https://www.flowjo.com

Infernal (v1.1.1) (Nawrocki and Eddy, 2013) http://eddylab.org/infernal/

R2R (v1.0.4) (Weinberg and Breaker, 2011) http://breaker.research.yale.edu/R2R/

Other

List of known non-coding motifs RFAM (Nawrocki et al., 2015); RAREs

(Aseev et al., 2015; Fu et al., 2013;

2014; Matelska et al., 2013).

N/A

Processed SHAPE data and structure models This paper http://www.chem.unc.edu/rna/

publications.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kevin

Weeks (weeks@unc.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

SHAPE probing experiments were performed on E. coli K12 MG1655 (gift of Bo Li, UNC, Chapel Hill), grown at 37�C in LB Broth.

Translation reporter assays were done using transformants of E. coli TOP10 (Invitrogen), grown at 37�C in Terrific Broth. Proteins

for in vitro binding assays were expressed in E. coli BL21-AI (Invitrogen), grown in Terrific Broth or ZYM-5052 auto-induction media

at 37�C with shift to 18�C during induction.

METHOD DETAILS

In-cell SHAPE probing
In full biological replicates, 2 mL of overnight culture were added to 48 mL of LB. Cells were incubated with shaking until the culture

reached OD600�0.5 (�30 min). To each culture, 5.55 mL of 10 mg/mL kasugamycin or LB was added, and cells were incubated with

shaking for 20 minutes. Next, the media was buffered by addition of 3 mL 2 M HEPES pH 8.0 (100 mM final), and the cultures incu-

bated by shaking for two minutes. SHAPE probing was performed in culture tubes by adding 9 mL of cells to 600 mL of 167 mM 1M7

(Steen et al., 2011) in DMSOand shaking for 2minutes. The sampleswere transferred to a new tube containing 200 mL of 500mM1M7

in DMSOand incubated at 37�C for 2minutes. This was repeated oncemore for a total of three rounds of 1M7modification. The same

procedure was performed for untreated control samples, but adding only DMSO. Cells were pelleted at 4000 g for 20 minutes at 4�C.
Supernatant was discarded, and the cell pellet was resuspended in 200 mL of 0.53 TE buffer (pH 8.0) with lysozyme (1 mg/mL) and

incubated on ice for 5 minutes. 1 mL of Trizol reagent (Invitrogen) was added, and the reaction tubes were incubated at room
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temperature for 5 minutes. To each sample was added 200 mL of cold chloroform. Samples were mixed by shaking for 15 s and incu-

bated at room temperature for 2-3minutes. Tubeswere centrifuged at 12,000 g for 15min at 4�C. The aqueous upper layer was trans-

ferred to a new tube, and a 1.1 3 volume of isopropanol was added. Reactions were incubated at �20�C for 30 minutes and then

centrifuged at 15,000 g for 30 minutes at 4�C. The supernatant was discarded and pellets were washed twice with 500 mL 80%

ethanol, centrifuging 5 minutes at 15,000 g between washes. Following the washes, the supernatant was discarded, and pellets

were air-dried for 5 minutes. Samples were then treated with DNase I (Ambion) and purified on an affinity column (RNeasy Mini

Kit; QIAGEN).

SHAPE probing of cell-free RNA
In full biological replicates, 2mL of overnight culture were added to 48mL of LB. Cells were grown tomid-log phase (OD600 = 0.6), and

RNA was gently extracted under non-denaturing conditions as described (Deigan et al., 2009). Total RNA was exchanged using a

gravity-flow Sephadex column (PD-10; GE Healthcare) into folding buffer containing 50 mM HEPES, pH 8.0, 200 mM potassium ac-

etate, and 5mMMgCl2 and incubated at 37�C for 20minutes. RNAwasmodified using three consecutive additions of 1M7 as follows:

Folded RNA (360 mL) was combinedwith 32 mL of 167mM1M7 solution in anhydrous DMSO, rapidlymixed, and incubated at 37�C for

2minutes. Subsequently, 8 mL of 500mM1M7 in DMSOwas then added, samples were quickly vortexed and incubated for 2minutes

at 37�C, and this was repeated once. Following modification, RNA was isolated by affinity chromatography (RNeasy Mini kit;

QIAGEN), followed by DNase I treatment (Ambion), and a second affinity column (RNeasy).

Reverse transcription
The integrity of each total RNA sample was evaluated using an Agilent Bioanalyzer 2100; RIN numbers were greater than 8.0 for all

samples. rRNAwas subsequently removed from 15 mg of total RNA (bacterial Ribo-zero kit; Illumina), yielding 50-100 ng of mRNA. All

recovered RNAwas input into SHAPE-MaP reverse transcription reactions, using SuperScript II (Invitrogen), 6mMMn2+, and random

nonamer primers (Siegfried et al., 2014; Smola et al., 2015b). Following reverse transcription, Mn2+ was removed using G-25 micro-

spin columns (GE Healthcare). Next, second-strand synthesis was performed (NEB), and dsDNA was isolated using a spin column

(PureLink micro spin column; Life Technologies).

Library preparation and sequencing
Libraries were prepared using NexteraXT (Illumina) from 1 ng of each second-strand synthesis product. Final libraries were size-

selected (AmpureXP beads; Agencourt) with a 1:1 bead to sample ratio (targeting products greater than 200 bp long), and quantified

using an Agilent Bioanalyzer 2100 and QuBit high-sensitivity dsDNA assay. For quality control, sequencing was initially performed on

a MiSeq. Subsequently, samples were sequenced on an Illumina HiSeq 2500 using version 4 chemistry and 2 3 125 reads. 20-100

million mapped sequencing reads were obtained per experimental conditional (Table S2), with 88% of base calls above Q30.

Translation reporter assays
Gene panel selection

We selected a subset of genes covered by our in-cell SHAPE data that had constant Shine-Dalgarno sequence strength

(�7.5 % DGhyb % �5.5 kcal/mol, DGhyb calculated as described in RBS–TE correlations) and reasonably well-defined structures

around the RBS. Regions consisting of 34-191 nts upstream (mean 90 nts) and 45-231 nts downstream (mean 120 nts) relative to

the start codon were then identified for each gene that could be excised with minimum perturbation of the observed endogenous

RBS structure (Table S3). These sequences were synthesized with flanking BamHI and HindIII restriction sites and cloned into the

pTrc-TE plasmid containing sfCherry and sfGFP under the control of independent Trc promoters (described below), with BamHI

and HindIII sites allowing in-frame insertion in front of sfGFP. Gene synthesis and cloning was performed by Genscript.

Plasmid construction

The pTrc-TE plasmid was constructed as follows. A pTrcHis A (Invitrogen V36020) was linearized by PCR using pTrcHis_rev and

pTrcHis_for primers (Table S4). Following PCR, plasmid template was digested with DpnI (NEB) and purified using a PCR cleanup

kit. Sequences for sfCherry (Kamiyama et al., 2016), a double terminator stem (iGEM part BBa_B0015) with restriction sites, and

sfGFP (Pédelacq et al., 2006) were designed with �40 nucleotides of overlapping sequence and ordered as geneBlocks (IDT)

(Table S4). Linearized backbone and gene blocks were assembled using isothermal assembly (NEB E5520S).

Measurement of GFP expression

Final cloned plasmids containing inserted endogenous leaders were transformed into TOP10 E. coli (Invitrogen C404010). Overnight

cultures were mixed 1:1 with 50% glycerol, aliquoted in 40 mL volumes to 96-well deep-well plates, and stored at �80�C. TE exper-

iments were initiated by adding 360 mL Terrific Broth supplemented with 50 mg/mL carbenicillin (TB+carb) to thawed plates and

growing overnight. These overnight cultures were diluted 1:700 into TB+carb and outgrown for 2 hours, followed by induction of

GFP/RFP-expression by addition of 0.2 mM IPTG for 2 hours. After the induction period, aliquots were removed to measure

OD600 via plate reader and the remaining culture was pelleted by centrifugation at 2000g for 10 min at 4�C, resuspended in ice-

cold PBS, and immediately forwarded to fluorescence measurement. A Beckman Coulter CytoFLEX flow-cytometer was used to

measure at least 10,000 cells, exciting at 488 nM and monitoring at 510 nM (525/40 filter) for GFP, and exciting at 561 nM and

monitoring at 610 nM (610/20 filter) for RFP. Data were analyzed in FlowJo, using forward/side-scatter gates to mask debris and
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FSC-A/FSC-Width gates to isolate singlet cells. The median RFP and GFP fluorescence was then calculated from the population of

RFP positive cells, with normalized GFP (nGFP) computed as the ratio of GFP to RFP. Results represent the average of three biolog-

ical replicates performed on separate days.

Exclusion of atypical transformants

In total, we made GFP-fusion expression transformants for 53 different genes. However, 21 transformants exhibited severe slow-

growth or low RFP fluorescence phenotypes, indicative of cellular toxicity caused by the endogenous 50 UTR or CDS leader of

the fusion gene. We excluded these transformants from further analysis due to the unpredictable effects that toxicity can have on

translation. In particular, we excluded transformants where themedian fraction of RFP positive cells across three biological replicates

was < 0.6, or where the median post-induction OD600 was < 0.001. In addition, we excluded three strains that exhibited > 5-fold vari-

ability in RFP or GFP fluoresence across replicates. This left the 29 transformants shown in Figure 4.

Electrophoretic mobility shift assays
Protein expression and purification

His6-tagged genes for the five E. coli proteins rplI (L9), rplM (L13), rpmB (L28), rpmG (L33), and rnpA (C5) were synthesized and cloned

into pET-29a(+) vectors using NdeI and XhoI restriction sites (GenScript). C5 contained anN-terminal MRGSH6GS sequence tag (Riv-

era-León et al., 1995), while all other proteins contained C-terminal GSH6 tags. Vectors were transformed into BL21- Arabinose-

inducible E. coli cells (Invitrogen). For L9, L13, and L28, overnight cultures were used to inoculate Terrific Broth and grown to

OD600 = 0.6 at 37�C, followed by induction for �16 hours at 18�C with L-arabinose at 0.02% (w/v) and IPTG at 0.1 mM final concen-

trations. For C5 and L33, ZYM-5052 autoinduction media was inoculated and grown to OD600 = 2.5, followed by addition of L-arab-

inose to 0.02% (w/v) and shift to 18�C for �16 hours. Cultures were collected by centrifugation, resuspended in A1 Ni-binding buffer

(50mMNaPO4 pH 7.4, 0.5MNaCl, 40mM imidazole), lysed by sonication, and clarified by centrifugation at 10,000g for 30minutes at

4�C. Supernatant was mixed and incubated with Nickel-NTA Sepharose-FF beads (GE Healthcare), collected by centrifugation, and

washed twice with A1 binding buffer, twice with A2 wash buffer (13 DPBS (GIBCO), 860 mMNaCl, 40 mM imidazole), and twice with

A3 wash buffer (13 DPBS, 360 mMNaCl, 40 mM imidazole). Washed beads were resuspended in elution buffer (13 DPBS, 110 mM

NaCl, 250 mM Imidazole), followed by centrifugation and removal of the supernatant containing the eluted protein. Millipore Amicon

Ultra 0.5 mL 3000 Da filters were used to concentrate and buffer exchange proteins; L9, L13, and L28 were exchanged into

20mMTris pH 7.5, 150mMNaCl, 1mMEDTA; andC5 and L33were exchanged into 20mMTris pH 7.5, 500mMKCl. Concentrations

of C5, L13, and L28 were determined by A280 with extinction coefficients estimated by Expasy, and the concentrations of L9, and L33

were determined via Bradford assay (ThermoFisher, calibrated using BSA standard). SDS-PAGE indicated purities of > 95% for C5,

L9, L13, and L28, and�80%purity for L33. L13was stored at 4�C in the final exchange buffer noted above. C5, L9, L28, and L33were

stored at 4�C in the above-noted buffer for several weeks before being diluted into glycerol (50% v/v final glycerol concentration) and

stored �20�C.
RNA transcription

DNAoligos for in vitroRNA synthesis (IDT; single-stranded oligos or double-stranded gBlocks) were PCR amplified usingQ5 hot-start

DNA polymerase (NEB) (sequences listed in Table S5). 32P-body-labeled RNAs were synthesized using T7 RNA polymerase (Rio

et al., 2011) and a32P-ATP, purified by 6% denaturing PAGE, eluted overnight using the crush and soak method, and precipitated

with ethanol. RNA concentrations were determined using the Qubit RNA HS assay (Invitrogen).

Binding assays

For binding reactions, RNAs were denatured at 95�C for 2 minutes, cooled on ice for 2 minutes, and then mixed with protein and

binding buffer and incubated at 25�C for 40 minutes. Final reaction concentrations were 5 nM 32P-RNA, protein (variable concentra-

tions), 12mMTris-HCl (pH 7.5), 0.1mg/mL yeast tRNA, 0.1mg/mLBSA, 5mMDTT, 1 unit/mL recombinant RNasin (Promega), and KCl

andMgCl2 optimized for each system. Final salt concentrations were as follows (mMKCl, mMMgCl2): rplMRNAs (80, 1); rpmHRNAs

(80, 1); and rpmB RNAs (250, 10). Protein dilutions from glycerol stocks were performed to maintain constant final glycerol concen-

trations of 4% (v/v) for all binding reactions. For L13, which was not stored in glycerol, the binding buffer was supplemented with

2.5% final (v/v) glycerol. Following equilibration, samples were mixed with glycerol loading dye to 10% final glycerol concentration

and immediately loaded onto running native polyacrylamide gels (0.5 3 TBE; 0.4-mm 3 28.5-cm 3 30-cm). 8% (37.5:1 acrylamide:

bisacrylamide) gels were used for rpmB and rplMRNAs and 6% (29:1 acrylamide:bisacrylamide) gels were used for rpmHRNAs. Gels

were run for 4 hours in a cold room at 720 V, which maintained the gel temperature < 15�C, with at least 1 hour of prerun.

Gel imaging and quantification

Gels were imaged using a GE Healthcare Typhoon Trio phosphoimager, and bands quantified using ImageQuant. Kd values were

obtained from fitting to the equation:

f =b+

�
m� b

1+ ðKd=PtÞn
�

where b andm are the upper and lower asymptotes of the fraction
 of RNA bound, respectively, Pt is the concentration of protein, and

n is the Hill coefficient. Non-linear least square fits were obtained using the curve_fit module of SciPy in Python. n ranged from

1.1-2.6. Reported Kd values represent the average and standard deviation of at least two independent datasets.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Read trimming and sequence alignment
Forward and reverse reads were quality trimmed by computing 5-nt averages of the Phred score, trimming at the first 5-nt window

with an average Phred score below 20. Reads shorter than 25 nts after trimming were excluded. Trimmed reads were aligned using

Bowtie2 (Langmead and Salzberg, 2012) to the E. coli strain MG1655 genome (GenBank: U00096.2). Bowtie2 alignment was per-

formed in paired-end mode with the following arguments:–local -D 20 -R 3 -N 1 -L 15 -i S,1,0.50 –score-min G,20,8 –ma 2 –mp

6,2 –rdg 5,1 –rfg 5,1 –dpad 100 –maxins 700. Reads not mapping to E. coli or with Bowtie-reported mapping quality scores below

30 were excluded from analysis.

SHAPE reactivity calculation
Data processing and quality control

Data were processed using the ShapeMapper software (Siegfried et al., 2014). Apparent mutation rates were calculated at each

genomic position by summing the number ofmismatches and deletions and dividing by the number of reads overlapping the position.

Sequence insertions and ambiguously aligned deletions were excluded. Mutations spanning multiple adjacent nucleotides were

treated as single mutations at the 30-most position (Siegfried et al., 2014). Nucleotides with apparent mutation rates above 0.02 in

any untreated sample were excluded from analysis. In some genomic regions, we observed clusters of elevated mutation rates

that appeared to correspond to local self-complementarity artifacts, possibly arising from PCR. These artifacts were identified as

regions of at least 10 nucleotides in which three or more of the 10 nucleotides showed mutation rates above 0.03 in the absence

of 1M7 treatment, or modified mutation rates above 0.1 in any condition, and were also excluded from analysis. Except where noted

elsewhere, SHAPE reactivities were only computed for nucleotides possessing sequencing depths above 1000 in both modified and

untreated samples; nucleotides not passing this filter were treated as ‘‘no data’’ and excluded from analysis. Genes were required to

have SHAPE data across 80% of the coding sequence for a given condition to be included in gene-specific analyses.

SHAPE reactivity normalization

SHAPE reactivities were calculated as the difference in mutation rates between 1M7-modified and untreated samples. Reactivities

were normalized within each probing condition to the mean of the 92-98th percentile reactivities of nucleotides from the ncRNAs

RNase P, tmRNA, and 6S RNA, as these ncRNAs were sequenced to high depths and showed few changes across experimental

probing conditions.

Calculation of gene median SHAPE
In Figure 1B, medians were computed over all coding sequence nucleotides with defined SHAPE reactivities. In Figure 2A, medians

were computed over the region 30 nucleotides 50 of the start codon to 30 nucleotides 50 of the stop codon; this captures potential

SHAPE reactivity changes associated with translation initiation at the considered gene while excluding changes attributable to trans-

lation initiation at neighboring genes.

Coding region aperiodicity
Previous transcriptome-wide structure-probing experiments in E. coli, yeast, and mammalian cells have been interpreted to indicate

that mRNA coding regions exhibit periodic reactivity profiles (Del Campo et al., 2015; Ding et al., 2014; Spitale et al., 2015; Wan

et al., 2014).

To provide the best comparison to these prior studies, we collectively averaged over all internal coding region 99-nt windows with

at least 60% SHAPE data coverage, aligning to preserve a common reading frame. This meta-gene analysis revealed that coding

regions have aperiodic SHAPE reactivity profiles in both cell-free and in-cell conditions (Figure S2). There are several potential ex-

planations for this discrepancy. First, prior studies of E. coli relied on enzymatic reagents with known sequence biases (Del Campo

et al., 2015). Given that coding regions have inherently periodic sequences, periodic structure-probing signal may be a consequence

of sequence bias. The 1M7 SHAPE reagent by contrast has minimal sequence bias. Second, prior studies relied on detecting trun-

cated RNA fragments via a ligation-based library preparation strategy. Such strategies introduce sequence biases that are avoided

by the SHAPE-MaP strategy (Smola et al., 2015a; 2015b;Weeks, 2015). Third, in truncation based detection strategies, any cellular or

experimental process that generates truncated or degraded RNA fragments will give artifactual signals. For example, cotranslational

decay in yeast yields intermediates consistent with the periodicity observed in structure-probing experiments (Pelechano et al.,

2015). Since SHAPE-MaP detects 1M7 modifications as mutations within continuous RNA sequences, such artifacts are avoided.

Fourth, previous E. coli probing experiments were performed on in vitro refolded RNAs, compared to the natively extracted cell-

free and in-cell conditions used here. Thus, differences in experimental conditions may contribute to these discordant observations.

Transcript boundary assignment
General strategy

Our SHAPE data represent averages over all transcript isoforms and thus primarily report on the structure of the most highly

expressed isoforms. We used manual analysis of the sequencing depths observed in the in-cell dataset to determine the transcript

isoform most consistent with the expression observed at each genomic locus. Hallmark signs of consistent read-depth across a
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transcript with drop-offs near the transcript boundaries were cross-referenced to E. coli transcript annotations compiled from

high-throughput end-mapping experiments (Conway et al., 2014). For transcripts without clear dominant transcription start sites,

we assigned the transcription start site to the most distal, significantly expressed transcript. Transcripts with internal terminators

were modeled as the read-through product if the read-depth of downstream genes was sufficient for accurate calculation of SHAPE

reactivities.

Treatment of dominant internal promoters

Several operons exhibited expression profiles consistent with dominant expression of a ‘‘short’’ transcript from an internal start site

and lesser, although significant, expression of a ‘‘long’’ transcript from a start site in front of upstream genes. In such cases, the genes

downstream of the internal start site were assigned to the short transcript isoform, and the long isoformwas truncated to include only

the upstream genes. To prevent structure modeling errors associated with using an artificial 30 boundary, the long isoform was

modeled with a 30 UTR that extended 600 nts past the stop codon of the last gene, or if closer, to the natural transcript termini.

Treatment of annotation-inconsistent transcripts

Approximately 20% of loci had expression profiles inconsistent with any annotated transcription unit (Conway et al., 2014). We

searched regulonDB (Salgado et al., 2013) for alternative start sites and/or terminator annotations that better fit the observed expres-

sion and found annotations for the majority of such loci. Visual analysis was used to estimate transcript boundaries for the remaining

8% of loci with unannotated transcription start or termination sites.

Secondary structure modeling and analysis
Modeling methodology

While nucleotides possessing < 1000 read-depth were otherwise excluded from SHAPE analyses, for the purposes of structure

modeling we included SHAPE reactivities for all nucleotides possessing sequencing depths of > 350 in both the modified and un-

treated samples. This choice was made to minimize regions with no data near transcript boundaries and is justified by prior studies

showing that SHAPE reactivities computed from as few as 200 reads provide useful information for guiding secondary structure pre-

diction (Siegfried et al., 2014). Minimum free energy secondary structures and base pairing probabilities were generated for each

mRNA transcript using the SuperFold algorithm and SHAPE reactivities as restraints (Smola et al., 2015b). SuperFold uses awindow-

ing approach to fold large RNAs. First, partition function calculations are performed for overlapping windows and are merged,

yielding transcript-wide base-pairing probabilities and base-pairing (Shannon) entropies. The minimum free energy structure is

then predicted in sliding windows, constrained by highly probable pairs observed in the merged partition function. Partition function

and minimum free energy calculations were performed using RNAstructure (v 5.8) (Reuter and Mathews, 2010). SuperFold

parameters were as follows: SHAPEslope = 1.8, SHAPEintercept = �0.6, trimInterior = 300, partitionWindowSize = 1500,

partitionStepSize = 100, foldWindowSize = 3000, foldStepSize = 300, maxPairingDist = 500. ‘‘No-data’’ models were generated

using the same SuperFold parameters, but setting SHAPE reactivities to �999 (equivalent to NaN).

Cross-condition comparisons of MFE structures

Analysis for a given condition was limited to transcripts possessing > 80% SHAPE data coverage (defined using > 1000 read-depth

threshold); due to varying read-depths in different samples, the number of transcripts passing this threshold varied from 59 to 157

(194 transcripts have at least one coding sequence with 80% data coverage in one sample). Comparisons between minimum free

energy (MFE) structures indicated that in-cell, cell-free, and kasugamycin transcript models share on average �60% of base pairs

(Figure S3A). A larger fraction of in-cell pairs are shared with cell-free structures than vice versa. This asymmetry arises from the

higher number of base pairs in cell-freemodels (Figure S3B); in cells, translation likely disrupts weak base pairs. Supporting this inter-

pretation, structures in kasugamycin-treated cells have more base pairs than in-cell structures but fewer than cell-free structures

(Figure S3B). Note that the apparent increased similarity in Figure S3A between kasugamycin and cell-free structures, and kasuga-

mycin and in-cell structures is misleading, and arises from the smaller number of transcripts with SHAPE data in the kasugamycin

condition. In-cell, kasugamycin, and cell-free structures shared comparable fractions of base pairs when analysis was limited to

the same subset of transcripts.

Structural variation in dynamic regions

RNAs with poorly-defined dynamic structures can formmultiple structures with similar free energies as the MFE structure, which can

cause structure modeling to be artificially sensitive to insignificant differences in SHAPE data. We therefore repeated our analysis

considering only well-defined base pairs (pairing probability > 0.9). Shown in Figure S3D, 25%–30% of nucleotides participate in

well-defined base pairs, representing �50% of the base pairs in each MFE structure. Again consistent with translation destabilizing

RNA structure, there are fewer high probability pairs in in-cell than in cell-free models. Notably, high-probability pairs are more likely

thanMFEpairs to be shared between conditions (> 70%of in-cell p > 0.9 pairs are also observed in cell-freemodels; Figure S3C). As a

complementary analysis, we also analyzed how MFE structure similarity varies as a function of base-pairing entropy (a measure of

how well-defined a structure is). Similarity between models is strongly anticorrelated with base-pairing entropy (Figures S3E and

S3F). Together, these analyses indicate that differences between in-cell and cell-free structures are primarily localized to poorly

defined regions. Some of these differences are caused by ribosome-induced unfolding in cells, which reduces the overall number

of base pairs observed in cells. However, in-cell and kasugamycin models differ from each other to similar degrees as they differ

with respect to cell-free models, implying that the cellular environment does not induce large-scale changes in RNA structure.
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Calculation of DGz
unfold and DGunfold

General strategy

We tested four different models of the RBS unfolding process that occurs during mRNA accommodation into the 30S subunit (Fig-

ure S4A). Equilibrium versus non-equilibrium unfolding allows versus disallows the mRNA molecule to refold to a new minimum free

energy structure after unfolding of the RBS. Local versus complete unfolding allows versus disallows base pairs spanning the

unfolded RBS window. For all four models, DGunfold was computed as

DGunfold =DGcons--DGref
DG is the free energy of the reference SHAPE-directed transcrip
ref t structure.DGcons is the free energy of the ‘‘constrained’’ transcript

structure with the RBS window constrained as single-stranded. For complete unfolding, the constrained structure was also pre-

vented from having base pairs spanning the RBS window. All DG calculations were performed using the efn2 command of

RNAstructure (excluding SHAPE pseudo-energies) (Reuter and Mathews, 2010).

Calculation of DGz
unfold

The non-equilibrium DGunfold is assumed to correspond to the unfolding transition state free energy, referred to as DGz
unfold

throughout the text. For these calculations, the SuperFold minimum free energy transcript structure was used as the reference struc-

ture. The constrained structure was obtained by deleting base pairs involving the RBSwindow from the reference. In the case of com-

plete unfolding, all base pairs spanning the RBS window were also deleted.

Calculation of DGunfold

Equilibrium DGunfold calculations required computing new sets of structure models. The reference structure for each gene was ob-

tained by folding up to a 1500-nt subsequence centered on the start codon. For genes with start codons < 750 nts from either the 50 or
30 transcript boundary, the subsequence extended from the proximal boundary up to 1500 nts, or to the distal boundary. For the local

unfolding scenario, the constrained structure was obtained by refolding the same subsequence with the RBS constrained as single

stranded. For the complete unfolding scenario, the subsequence was refolded in two segments (50 and 30 to the RBSwindow) to pre-

vent RBS-spanning pairs; DGcons was then obtained by summing the DG computed for each segment. These folding calculations

were performed using the Fold command of RNAstructure with parameters –mfe –md 500 –si –0.6 –sm 1.8 and the same SHAPE

restraints as used with SuperFold.

RBS–TE correlations
Gene inclusion criteria

Downstream genes in polycistronic transcripts with TE (Li et al., 2014) within 2-fold of the TE of the immediate upstream gene were

classified as potentially translationally coupled and excluded (Figure 3A). Analysis was restricted to genes possessing SHAPE data

for > 80%of nucleotides in the 200-nt window centered around the start codon. If the gene start codonwas less than 100 nts from the

transcript boundary this window extended from the boundary to 100 nts upstream of the start codon. Genes with non-canonical start

codons (not AUG or GUG) or lacking Shine-Dalgarno sequences were excluded. Shine-Dalgarno sequences were assessed by

computing the hybridization free energy DGhyb between the 16S rRNA anti-Shine-Dalgarno sequence CACCUCCU and the gene

subsequence from �16 to �3 relative to the start codon. Genes with valid Shine-Dalgarno sequences were defined as having

DGhyb % 0, with the terminal Shine-Dalgarno/anti-Shine-Dalgarno base pair located within the interval [-10, �4] relative to the

gene start. DGhyb calculations were performed using RNAstructure (Bifold –i).

Investigation of different RBS unfolding models

Correlations were computed between TE and the local and complete equilibrium energy of unfolding (DGunfold), and local and com-

plete non-equilibrium energy of unfolding (DGz
unfold) for varied sizedwindows around the RBS. As shown in Figure S4B, localDGz

unfold

was strongly correlated with TE for RBS windows between 30-nt to 50-nt in size (r < –0.6). Supporting that this strong correlation

reflects a true physical unfolding process, the correlation between DGz
unfold and TE markedly decreased once the RBS window

was expanded beyond the anticipated physical unfolding window (beyond�25 or +25 of the gene start). By contrast, the correlations

between TE and completeDGz
unfold, localDGunfold, and completeDGunfold are significantly weaker for all analyzedwindows (r% –0.4).

For other analyses, RBS DGz
unfold and RBS DGunfold were taken to be the local DGz

unfold and DGunfold, respectively, computed for the

window [-25, +25] around the start codon. All linear regressions were computed using the stats.linregress function of ScipPy in

Python.

Analysis limitations

In general, SHAPE-directed structure models are more accurate in modeling short-range than long-range base pairs. Thus, the

reduced correlation between complete DGz
unfold and TE compared to local DGz

unfold may be a consequence of including lower-ac-

curacy long-range base pairs in the complete unfolding calculation. Additionally, our equilibrium DGunfold calculations are compro-

mised by the necessary assumption that our SHAPE data can be used to model the RBS-unfolded structure.

Comparison to prior studies of synthetic genes

Studies of overexpressed synthetic genes have observed comparable (r z–0.6) correlations between TE and complete equilibrium

RBS unfolding (complete DGunfold) as we observe between TE and DGz
unfold for native genes (Espah Borujeni et al., 2014;

Goodman et al., 2013; Kudla et al., 2009; Salis et al., 2009). The similar observed correlations suggest a commonmechanism despite
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the important conceptual difference between DGunfold and DGz
unfold. We note that several features made these prior experiments

insensitive to differences between kinetic and equilibrium mechanisms. First, previously studied mRNAs were engineered to have

well-defined, modular secondary structures. Consequently, RBS unfolding is unlikely to promote refolding of adjacent mRNA se-

quences, rendering equilibrium DGunfold and non-equilibrium DGz
unfold equivalent. Second, the studied mRNAs had only short-range

pairing interactions, and thus were insensitive to differences between complete versus local unfolding. Finally, the kinetic mechanism

is based on the assumption that individual mRNA species comprise a small fraction of the total cellular mRNA. This assumption may

be violated for highly overexpressed mRNAs, which are more likely to be at or near equilibrium with the pool of free 30S subunits.

CDS–TE correlations
The local DGz

unfold (or DGunfold) was computed for 50-nt windows across the CDS, relative to the start or stop codon of each gene,

using the same methodology described above for the RBS. For windows relative to the start codon (50 CDS), the regression of ln(TE)

on DGz
unfold (or DGunfold) was computed for the same genes as used for RBS regressions, with the additional restriction that genes

must be > 200 nts long (in-cell N = 150; kasugamycin N = 102; cell-free N = 120). For windows relative to the stop codon (30 CDS),
regressions were computed for genes passing the same start codon, Shine-Dalgarno strength, translational coupling, and > 200 nt

length filters, while requiring SHAPE data for > 80% of nucleotides in the 200-nt window centered around the stop codon (in-cell

N = 155; kasugamycin N = 92; cell-free N = 173). Linear regressions and significance were computed using the stats.linregress

function of ScipPy in Python.

Translational coupling analysis
The number of gene-linking pairs (LP) between a given gene and its upstream neighbor was computed from the base pairing partition

function as:

LP=
Xtu
i = 1

Xtt
j > i

pði; jÞ,IA
�
jRsg �w

�

where p(i, j) is the pairing probability between positions i and j, IA
 is the indicator function, sg is the position of the gene start, and tu
and tt are the termini of the upstream gene and the transcript, respectively. The w parameter specifies the size of the included RBS

window (for example, pairs linking the Shine-Dalgarno sequence to the upstream gene are included in LP). We usedw = 25, matching

the RBS window size used elsewhere in the text. A similar trend of decreasing TE variation with LP was observed for different w

values. Mechanistic considerations distinct from potential structural coupling make translational coupling unlikely between genes

separated by very long intergenic regions, or between genes with significantly overlapping coding sequences. Therefore, to prevent

such genes from skewing analyses, we limited our analysis to genes where �5 < sg-tu < 100, but comparable results were obtained

when the analysis was applied to all genes. Analysis was restricted to genes that had SHAPE data for > 80% of nts in the 200-nt win-

dow centered around the gene start.

Automated motif detection
Algorithm description

We built on a previously described strategy for identifying well-structured motifs in large RNA molecules (Figure 6A) (Siegfried et al.,

2014; Smola et al., 2015b). Local median SHAPE reactivity and entropy were computed over centered, sliding 51-nt windows using

the cell-free dataset. At boundaries, local medians were computed using all nucleotides within ± 26 nts of the considered position

(for example, for a window centered on nucleotide 10, the median was computed using nucleotides [1, 36]). At least 26 nts were

required to have SHAPE data in order to compute a valid local median. Well-structured regions were identified as regions where

the local median SHAPE fell below 0.3 and median entropy fell below 0.04 for more than 25 contiguous nucleotides. These regions

were then expanded by up to 50 nts on either side to incorporate nested structures with pairing probability (pp) > 0.9. To confirm

identified structures also existed in cells, > 95% of cell-free pp > 0.9 base pairs were required to have pp > 0.3 in-cell. If this 95%

cutoff was not satisfied, the region was trimmed to the maximal sub-region meeting this requirement. Finally, all nucleotides

with pp < 0.5 were trimmed from the 50 and 30 ends. Final trimmed consensus regions that were shorter than 25 nts or

possessed < 80%cell-free or in-cell SHAPE data coveragewere rejected. Following automated identification, eachmotif was visually

inspected and in some cases manually adjusted to include (or exclude) adjacent structures that were judged to be part of (or distinct

from) the algorithmically identified structure.

Our use of fixed-value SHAPE and base-pairing entropy cutoffs differs modestly from our previously described algorithm, where

regions were identified from comparisons to the global medians of SHAPE and entropy (Siegfried et al., 2014; Smola et al., 2015b).

Fixed-value cutoffs are required for analyzing RNAs that are potentially poorly structured overall (such as the mRNAs analyzed here),

or, conversely, those that are highly structured overall (such as structured ncRNAs). The 0.3 SHAPE cutoff corresponds to the

maximum median reactivity expected of paired nucleotides, and the 0.04 base-pairing entropy cutoff corresponds to a pp z0.95.
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UTR/IGR data coverage criteria

We limited our search to UTRs and IGRs > 25 nts long, and which contained at least one 25-nt stretch with 75% SHAPE coverage in

both the in-cell and cell-free datasets. Annotated REP (Keseler et al., 2013) and ERIC (Wilson and Sharp, 2006) motifs were

masked out.

Sensitivity of detecting known motifs

We compiled a list of all E. coli RFAM (Nawrocki et al., 2015) motifs and known RAREs (Aseev et al., 2015; Fu et al., 2013; 2014; Ma-

telska et al., 2013). Structures identified from our de novo structure models were considered ‘‘true positives’’ if they recapitulated any

portion of the known structure. Thirteen of these knownmotifs fall within UTR/IGRs passing our length and data coverage filters, and

of these thirteen, we positively identified nine, corresponding to a sensitivity of 69%. The four knownmotifs we failed to identify were

the rplK, rpsO, rpsF, and rplYRAREs.We note that our motif search also identified the so-called Pseudomonas sRNA P26motif listed

in RFAM (named intergenic rplL-rpoBmotif in Table S1). Despite its entry in RFAM, we determined that this motif is better described

as ‘‘functionally uncharacterized’’ due to a lack of validation (see Table S1), and therefore excluded this motif from our sensitivity cal-

culations. If we include this motif in our sensitivity calculations, we detect 10 out of 14 (71%) of known RFAM and RARE motifs.

Comparisons with prior comparative genomics predictions

We compared the UTR/IGR motifs identified here against prior comparative genomics and bioinformatics predictions of functional

RNAs (Livny et al., 2008; Ott et al., 2012; Pichon et al., 2012; Rivas et al., 2001; Tran et al., 2009; Uzilov et al., 2006). Several of these

algorithms were optimized to predict small RNA genes rather than functional UTR/IGR motifs, but were nonetheless included for

completeness. The study by Uzilov et al. includes predictions made using three algorithms: Dynalign (Uzilov et al., 2006), QRNA (Ri-

vas and Eddy, 2001), and RNAz (Washietl et al., 2005); comparisons were performed to all three sets of predictions (requiring p > 0.9

for Dynalign andRNAz).Motifs were considered ‘‘previously predicted’’ if they overlapped a predicted functional loci by at least 50 nts

and were located on the same strand (if specified).

Motif conservation analysis
Algorithm for identifying homologs

We constructed an automated pipeline to search for motif homologs in other bacterial genomes (Figure S7). Similar to other compar-

ative genomics pipelines (Slinger et al., 2014; Yao et al., 2007), we use iterative Infernal (v1.1.1) (Nawrocki and Eddy, 2013) searches

to train a covariationmodel (CM) constructed from a single inputE. coli structure. The initial CMwas built and calibrated from aStock-

holm file containing the E. coli sequence and base pairs (cmbuild–F; cmcalibrate). cmsearchwas performed against a non-redundant

bacterial genome database using a lenient e-value cutoff of 1.0 (cmsearch –incE 1.0 –mid –cpu 8). The genetic context of each iden-

tified homolog was cross-referenced to E. coli, filtering out homologs found in different contexts or at unannotated loci. The filtered

homologs were then aligned (cmalign –cpu 8 –noprob) and used to construct a new CM. This process was repeated a total of three

times, yielding a ‘‘trained’’ CM. The trained CMwas then used to perform a final search against the bacterial database using a e-value

cutoff of 0.01.

Homolog genetic context filtering

Genetic context filtering was performed using RefSeq annotations (Tatusova et al., 2014). The ‘‘transcript’’ of each homolog was in-

ferred by first identifying adjacent same-strand genes within 400 nts. The ‘‘transcript’’ was then extended from both directions to

incorporate additional same-strand genes, allowing a maximum intergenic distance of 400 nts. These genes were then cross-refer-

enced against the genes of the parent E. coli transcript, defining shared context as at least one common gene between the two

transcripts. Cross-referencing was performed using both gene names and products: names were cross-referenced using gene

and gene_synonym fields; products were cross-referenced using manually specified keywords.

Bacterial genetic database details

The genomic database was constructed by downloading the RefSeq (Tatusova et al., 2014) bacterial genome assembly summary

from ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt (onOctober 19, 2015). Genomes that were not ‘‘lat-

est,’’ ‘‘Complete Genome,’’ ‘‘reference,’’ or ‘‘representative’’ were discarded. From the remaining genomes, a single genome was

chosen for each species and downloaded from the NCBI genome ftp (also onOctober 19, 2015). Reference genomeswere prioritized

over representative genomes. For species with multiple reference genomes, or multiple representative but no reference, the last

listed genome was used.

Consensus motif analysis

The homologs returned from our algorithmic search were manually assessed for context specificity and phylogenetic diversity. For

the large majority of motifs, the search procedure returned homologs with 100% context-specificity and reasonable structure con-

servation. Our homolog searches for identified ribosomal protein autoregulatory motifs provide strong positive controls, yielding

consensus structures and phylogenetic diversities comparable to prior studies (Table S1) (Fu et al., 2013). However, in some cases,

searches using the trained CM returned homologs with poor context or secondary structure conservation. This was attributable to

either progressive loss of CM specificity during the refinement stage, or for small motifs, low information content of the original

motif. These cases are noted in Table S1, and were excluded from downstream conservation and consensus structure analysis.

R2R (Weinberg and Breaker, 2011) was used to draw consensus structure diagrams and assess secondary structure conservation

(–GSC-weighted-consensus 3 0.97 0.9 0.75 4 0.97 0.9 0.75 0.5 0.1).
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Conservation calculation

Conservationwithin enterobacteria was computed as the number of enterobacterial homologs identified divided by 32, the total num-

ber of enterobacteria in our database. The endosymbiontsWigglesworthia glossinidia and Buchnera aphidicola were excluded from

conservation calculations.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw sequencing reads from SHAPE experiments reported in this paper is ENA: PRJEB23974 (https://

www.ebi.ac.uk/ena/data/view/PRJEB23974).

Processed SHAPE data, RNA structuremodels, Python code used to perform automated low-SHAPE/low-entropymotif detection,

and Python code to perform automated homology searches are freely available at the Lead Contact’s webpage, http://www.chem.

unc.edu/rna/.
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Figure S1. In-Cell SHAPE Resolves Protein Binding Sites in Non-coding RNAs, Related to Figure 1

(A and B) Rawmodification profiles and resultant SHAPE profiles of tmRNA and RNase P probed under in-cell and cell-free conditions. DMSO no-reagent control

samples were collected for both cell-free and in-cell conditions, but for simplicity, only a single DMSO profile is shown. Smoothed SHAPE reactivity differences

were calculated using the DSHAPE framework (Smola et al., 2015a).

(C) SHAPE reactivity changes mapped on the E. coli tmRNA secondary structure.

(D) SHAPE reactivity changes mapped on the crystal structure of the tRNA-like domain of A. aeolicus tmRNA (PDB 1P6V). In-cell SHAPE reactivity protections

(green) correspond closely with the SmpB binding site.

(E) SHAPE reactivity changes mapped on the E. coli RNase P RNA secondary structure.

(F) SHAPE reactivity changesmapped on the crystal structure of T. maritimaRNase P (PDB 3QIQ). In-cell SHAPE reactivity protections (green) correspond closely

with C5 protein and tRNA binding sites.
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Figure S2. Reproducibility and Meta-gene Analysis of SHAPE Reactivity, Related to Figure 1

(A) Per-gene Pearson correlation between SHAPE profiles across biological replicates. Medians are denoted by black bisecting lines, boxes indicate the in-

terquartile range (IQR), and whiskers indicate data within 1.5 3 IQR of the top and bottom quartiles.

(B) Per-gene Pearson correlation between SHAPE profiles across experimental conditions.

(C) Meta-gene analysis of cell-free SHAPE reactivity provides little information on the structure of individual mRNAs, but indicates that coding regions do not have

periodic structures (top; see also STAR Methods). Note that changes in average SHAPE reactivity are much smaller than the per-nucleotide standard deviation.

Note also that the increased SHAPE reactivity observed at the meta-gene start and stop codons mirror AU-sequence biases (bottom). Averaging was performed

transcriptome-wide, including all 100-nt windowswith at least 60%cell-free SHAPE data coverage irrespective of whether the parent transcript had sufficient full-

length SHAPE coverage for other analyses. Hence, this analysis reflects a larger pool of genes, and is comparable inmakeup to other transcriptome-wide studies.

The number of windows used for each average is denoted.
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Figure S3. Comparison between SHAPE-Directed and No-Data Structure Models, Related to Figure 2

(A) Similarity between MFE structure models for each transcript. Comparisons were performed by computing the fraction of base pairs shared between the first

and second structures and vice versa (first and second correspond to order listed on x axis). These fractions correspond to positive predictive value (ppv) and

sensitivity, respectively, which are conventionally used when comparing structure models to known references.

(B) Fraction of nucleotides that are base paired in MFE structures for different conditions.

(C) Similarity between the set of highly probable (p > 0.9) base pairs for each condition. Comparisons were performed as described in panel A.

(D) Fraction of nucleotides paired with p > 0.9 under different conditions. In panels A-D, medians are denoted by red bisecting lines, boxes indicate the IQR,

whiskers indicate data within 1.5 3 IQR of the top and bottom quartiles, and outliers are indicated by crosses.

(E) Correlation between base-pairing entropy and the fraction of MFE pairs shared between in-cell and cell-free models. High entropy indicates structures are

poorly defined.

(F) Correlation between base-pairing entropy and the fraction of MFE pairs shared between in-cell and kasugamycin models.
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Figure S4. Correlation between TE and DGunfold and DGz
unfold, Related to Figure 3

(A) Scheme illustrating different models of mRNA accommodation into the 30S subunit. For equilibrium calculations, the mRNAmolecule is allowed to refold to a

new minimum free energy structure after unfolding the RBS, but not in non-equilibrium (kinetic) calculations. Local versus complete unfolding allows versus

disallows base pairs across the RBS window. Non-equilibrium unfolding energies are assumed to correspond to DGz
unfold, the free energy of the unfolding

transition state (see STAR Methods).

(B and C) Correlation coefficients computed using different sized windows for local (filled bars) and complete (open bars) RBS unfolding models. Correlations

were computed using in-cell structures, excluding potential translationally coupled genes (n = 157). In panel B, red shading indicates the model used for all

remaining analyses.

(D–F) Correlation between TE and localDGz
unfold for the three probing conditions. To facilitate direct comparison, we only show genes that possess sufficient data

coverage in all three SHAPE probing conditions (n = 92).

(G) Correlation between TE and local DGz
unfold computed from ‘‘no-data’’ structure models.

(H) Correlation between TE andDGtotal predicted by the RBS calculator (v1.0), a representative thermodynamics-based TE calculator (Salis et al., 2009). Analyses

in panels G and H were performed on genes possessing in-cell SHAPE data (n = 157) and thus can be directly compared to Figure 3C.



A C

D
500 600 700 800

rplTrpmI

TEdown = 1.2TEup = 1.7

6200 6300 6400 6500

rpsDrpsK

6600

TEdown = 1.0TEup = 0.9
0 20 40 60 80 100

Intergenic distance

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50
Number of gene-linking pairs

0

1

2

3

4

5

6

7

8

p = 9   10-5

p = 0.1

Lo
g 

  (
 T

E
   

   
 / 

TE
   

 )
2

up
do

w
n

|
|

Lo
g 

  (
 T

E
   

   
 / 

TE
   

 )
2

up
do

w
n

|
|

B

+

Figure S5. RNA Structure Couples Translation of Adjacent Genes, Related to Figure 5

(A) Relationship between the TE ratio of adjacent genes as a function of the number base pairs linking the genes. Bottom and top quintiles are shown in yellow and

blue, respectively; these quintiles correspond to the ‘‘few’’ and ‘‘many’’ linking-pairs categories in Figure 5. The red dashed line highlights the consistent decrease

in TE variability as genes are linked by more base pairs.

(B) Relationship between TE of adjacent genes as a function of the length of the intervening intergenic region. This analysis shows clearly that translational

coupling is not a simple function of intergenic distance. Top and bottom quintiles are shown as in (A). Statistical significance between the top and bottom quintiles

is indicated above (A) and (B) and was tested using two-tailed Mann-Whitney U-tests.

(C and D) Examples of structure-mediated translational coupling over long intergenic regions. The rpmI-rplT IGR is 53-nt long, and the rpsK-rpsD IGR is 34-nt

long. Structures are shown as pairing probability arcs (key shown in Figure 3).
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Figure S6. SHAPE Data Reveal that Many Known RARE Structures Are Unstable in the Absence of Bound Protein, Related to Figure 6

Motifs are labeled by downstream gene, with the ribosomal protein ligand listed in parentheses. Accepted functional structures and SHAPE data are shown for

eachmotif (Aseev et al., 2015; Fu et al., 2013; 2014; Matelska et al., 2013). Regions where SHAPE data are inconsistent with an accepted structure are highlighted

with light blue shading, and corresponding unstable structural elements are shown using gray arcs. Brown boxes indicate coding sequences. Note that the rplE

motif is located entirely within the rplE coding region, and thus was not included in our automated motif search.
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Figure S7. Outline of the Homolog Search Strategy, Related to STAR Methods

Each E. coli structure was used to build an Infernal (Nawrocki and Eddy, 2013) covariation model. The initial model was refined three times by incorporating

additional homologs identified in similar genetic contexts. The trained covariation model was then used to perform a final search, with returned homologs used to

construct consensus structures using R2R (Weinberg and Breaker, 2011).
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Figure S8. The rpmB 50 UTR Binds L9 and L28, Related to Figure 6
(A) Constructs used. Alterationsmade in variant constructs are highlighted in black. In the stabilizing H1insA-GC construct, an A is inserted to pair with the bulgedU,

and the neighboring AU pair is changed to a GC. The WTtrunc construct contains only the three-way junction (truncated nucleotides are drawn in gray).

(B) The low-mobility conformation of the rpmB 50 UTR is salt-dependent, and is stabilized by theH1insA-GCmutation. Quantification indicates that 64%of H1insA-GC

RNA is in the low-mobility conformation at 200 mM KCl and 20 mM MgCl2, compared to 48% for WT RNA. 10 nM RNA was folded as described in Methods in

10 mM Tris-HCl (pH 7.5), 0.1 mg/mL yeast tRNA, and varying KCl and MgCl2. Concentrations are in mM.

(C) Co-incubation experiment indicates that theWT andWTtrunc constructs do not interact, confirming that the slow conformation is not a dimer. 2.5 nM isolated or

mixed RNAs were denatured and folded as described in Methods in L9-binding buffer.

(D) Binding of L9 and L28 to different constructs. L28 appears to bind both high- and low-mobility states, as evidenced by the appearance of new bands in both

regions of the gel (see also Figure 6E). L9 and L28 concentrations are 250 and 500 nM. The no protein and 500 nM L9+L28 lanes in the DH3 panel are identical to

the DH3 panel in Figure 6E.

(E) Concentration-dependent binding of L9 (concentrations vary from 178 to 600 nM). Estimate, KDz300 nM.

(F) L33 binds the rpmB 50 UTR but is competed by L9 (L33 = 500 nM; L9 varies from 125 to 500 nM).

(G) The WTtrunc construct does not bind L9 or L28 (500 nM concentrations).

(H) Consensus 50 UTR across all enterobacterial species indicates that sequences downstream of the three-way junction are highly conserved. Key for the

consensus is located in main text Figure 6.
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